数据仓库是什么?
数据仓库是指具有主题导向、整合性、长期性与稳定性的数据群组,是经过处理整合,且容量特别大的关系数据库,用以储存决策支持系统所需的数据,供决策支持和数据分析使用。
一般企业要做数据分析,商业智能BI和数据仓库二者缺一不可。也有些人会感到疑惑,自己的数据仓库还没建立,如何做商业智能BI?是不是得先建数据仓库?无论哪一种BI项目,都需要从各级管理者的决策性思维出发,建立分主题的数据模型,从而形成数据仓库,无论其存在形式如何,数据仓库的分析思路必然贯穿于整个项目,并涵盖各个层级的发展战略和业务表单。
有了BI工具还需要建立数据仓库吗?数据仓库系统与数据库不相同
一般意义上的数据库,指由单个业务系统存储的数据集,其作用是对业务系统流程生成的数据进行处理,以便于对各个流程生成的数据进行存储。
为了满足决策分析的需要,数据仓库被建立起来,其面向主题的设计,会随着数据特性的变化而增加或减少,例如数据之间的兼容性和互斥性,它的数据容量将比业务数据库大五倍以上。
一般来说,数据仓库应该单独建立,以减少对业务数据库的干扰。他利用数据库的实现。他借助于数据库实现。如关系型数据库,多维数据库、内存数据库等,这些都可以作为数据仓库来使用。数据仓库的建立,有以下几个主要方面工作:
整合业务数据;主数据管理;元数据管理;数据质量管理;数据清洗和转换;数据装载,主题建模等,最终支持各级管理者的数据分析、业务预测、决策。
有了BI工具还需要建立数据仓库吗?
答案是肯定的。任何BI项目,都需要从各级管理者的决策性思维出发,建立分主题的数据模型,从而形成数据仓库,无论其存在形式如何,分析思想都必须贯穿于整个项目,并涵盖各个层次的发展战略和业务表单,随时纳入外部数据,以保证决策的科学性和前瞻性,满足整个决策过程。
因此我不推荐将数据仓库单独作为一个项目,因为在业务分析需求不确定的情况下建立数据仓库,将会带来巨大的风险。而且企业总有数据无法及时入数据仓库,有很多暂时需要分析但又没有放入数据仓库的外部数据,同样对分析决策起着重要作用。
商业智能BI的逻辑:
商业智能(Business Intelligence)是一种对商业信息进行收集、管理和分析的过程,它通常包括数据库技术、数据仓库(或数据场)、联机分析处理(OLAP)等几个方面,其实现涉及可视化、交互等动态分析型软件。
各级别的管理人员都以数据仓库为本,利用各种查询分析工具(Query/ReportTools)、联机分析处理(OLAP)或数据挖掘(Data Mining)工具以及决策者的行业知识,从数据仓库中获取有用的信息,从而帮助企业获利,并提高生产力和竞争力。
商业智能BI不是简单的报表和漂亮的图形,它主要考虑的是模型交付能力和工具软件的开放性。面对海量数据,提高信息的利用率,快速、准确地找到所需信息,做出正确的决策,是商业智能BI发展的驱动力。就好比如Smartbi,Smartbi是国内老牌BI厂商,企业级商业智能应用平台,经过多年的持续发展,凝聚了多年的商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求,产品和技术实力毋庸置疑的。操作方面也很简单,基本只需鼠标点击即可,功能也很人性化。当然Smartbi还有 一个特大的优势是对开发人员很友好,设计界面更加时尚,初学者上手容易,操作方便。内置丰富的样式风格,做出来的报表展示效果更好一些,而其他工具可能就要多花费点时间设置下,特别适合初学者上手。
领取专属 10元无门槛券
私享最新 技术干货