1、所有表必须使用 Innodb 存储引擎
没有特殊要求(即 Innodb 无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用 Innodb 存储引擎(mysql5.5之前默认使用Myisam,5.6以后默认的为Innodb)Innodb 支持事务,支持行级锁,更好的恢复性,高并发下性能更好。
2、数据库和表的字符集统一使用 UTF8
兼容性更好,统一字符集可以避免由于字符集转换产生的乱码,不同的字符集进行比较前需要进行转换会造成索引失效。
3、所有表和字段都需要添加注释
使用 comment 从句添加表和列的备注,从一开始就进行数据字典的维护。
4、尽量控制单表数据量的大小,建议控制在500万以内
500万并不是 MySQL 数据库的限制,过大会造成修改表结构,备份,恢复都会有很大的问题。
可以用历史数据归档(应用于日志数据),分库分表(应用于业务数据)等手段来控制数据量大小。
5、谨慎使用 MySQL 分区表
分区表在物理上表现为多个文件,在逻辑上表现为一个表。谨慎选择分区键,跨分区查询效率可能更低, 建议采用物理分表的方式管理大数据
6、尽量做到冷热数据分离,减小表的宽度
MySQL 限制每个表最多存储 4096 列,并且每一行数据的大小不能超过65535字节 减少磁盘IO,保证热数据的内存缓存命中率(表越宽,把表装载进内存缓冲池时所占用的内存也就越大,也会消耗更多的IO)更有效的利用缓存,避免读入无用的冷数据 经常一起使用的列放到一个表中(避免更多的关联操作)
7、禁止在表中建立预留字段
预留字段的命名很难做到见名识义 预留字段无法确认存储的数据类型,所以无法选择合适的类型 对预留字段类型的修改,会对表进行锁定。
8、禁止在数据库中存储图片,文件等大的二进制数据
通常文件很大,会短时间内造成数据量快速增长,数据库进行数据库读取时,通常会进行大量的随机 IO 操作,文件很大时,IO 操作很耗时 通常存储于文件服务器,数据库只存储文件地址信息。
9、禁止在线上做数据库压力测试
10、禁止从开发环境,测试环境直接连接生成环境数据库
1、优先选择符合存储需要的最小的数据类型
原因
列的字段越大,建立索引时所需要的空间也就越大,这样一页中所能存储的索引节点的数量也就越少也越少,在遍历时所需要的 IO 次数也就越多, 索引的性能也就越差。
方法
1)将字符串转换成数字类型存储,如:将IP地址转换成整形数据。
mysql 提供了两个方法来处理 ip 地址:
插入数据前,先用 inet_aton 把 ip 地址转为整型,可以节省空间。显示数据时,使用inet_ntoa把整型的ip地址转为地址显示即可。
2)对于非负型的数据(如自增ID、整型IP)来说,要优先使用无符号整型来存储
因为:无符号相对于有符号可以多出一倍的存储空间
VARCHAR(N)中的N代表的是字符数,而不是字节数
使用UTF8存储255个汉字 Varchar(255)=765个字节。过大的长度会消耗更多的内存
2、避免使用 TEXT、BLOB 数据类型,最常见的 TEXT 类型可以存储 64k 的数据
建议把 BLOB 或是 TEXT 列分离到单独的扩展表中
Mysql 内存临时表不支持 TEXT、BLOB 这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。
而且对于这种数据,Mysql还是要进行二次查询,会使sql性能变得很差,但是不是说一定不能使用这样的数据类型。
如果一定要使用,建议把 BLOB 或是 TEXT 列分离到单独的扩展表中,查询时一定不要使用 select * 而只需要取出必要的列,不需要 TEXT 列的数据时不要对该列进行查询。
TEXT 或 BLOB 类型只能使用前缀索引
因为 MySQL 对索引字段长度是有限制的,所以 TEXT 类型只能使用前缀索引,并且TEXT 列上是不能有默认值的。
3、避免使用 ENUM 类型
修改 ENUM 值需要使用 ALTER 语句
4、尽可能把所有列定义为NOT NULL
原因:
5、使用TIMESTAMP(4个字节)或DATETIME类型(8个字节)存储时间
TIMESTAMP 存储的时间范围 1970-01-01 00:00:01 ~ 2038-01-19-03:14:07。
TIMESTAMP 占用 4字节和 INT 相同,但比 INT 可读性高
超出 TIMESTAMP 取值范围的使用 DATETIME 类型存储。
经常会有人用字符串存储日期型的数据(不正确的做法):
6、同财务相关的金额类数据必须使用decimal类型
Decimal 类型为精准浮点数,在计算时不会丢失精度。占用空间由定义的宽度决定,每4个字节可以存储 9 位数字,并且小数点要占用一个字节。可用于存储比 bigint 更大的整型数据。
1、限制每张表上的索引数量,建议单张表索引不超过5个
索引并不是越多越好!索引可以提高效率同样可以降低效率。
索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
因为 mysql 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加mysql优化器生成执行计划的时间,同样会降低查询性能。
2、禁止给表中的每一列都建立单独的索引
5.6 版本之前,一个 sql 只能使用到一个表中的一个索引,5.6以后,虽然有了合并索引的优化方式,但是还是远远没有使用一个联合索引的查询方式好。
3、每个Innodb表必须有个主键
Innodb是一种索引组织表:数据的存储的逻辑顺序和索引的顺序是相同的。
每个表都可以有多个索引,但是表的存储顺序只能有一种 Innodb是按照主键索引的顺序来组织表的。
不要使用更新频繁的列作为主键,不适用多列主键(相当于联合索引) 不要使用UUID、MD5、HASH、字符串列作为主键(无法保证数据的顺序增长)。
主键建议使用自增ID值。
并不要将符合1和2中的字段的列都建立一个索引,通常将1、2中的字段建立联合索引效果更好
建立索引的目的是:希望通过索引进行数据查找,减少随机IO,增加查询性能 ,索引能过滤出越少的数据,则从磁盘中读入的数据也就越少。
因为这样会增加查询优化器生成执行计划的时间。
对于频繁的查询优先考虑使用覆盖索引。
覆盖索引:就是包含了所有查询字段(where,select,ordery by,group by包含的字段)的索引
覆盖索引的好处:
Innodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,
如果是用二级索引查询数据的话,在查找到相应的键值后,还要通过主键进行二次查询才能获取我们真实所需要的数据。而在覆盖索引中,二级索引的键值中可以获取所有的数据,避免了对主键的二次查询 ,减少了IO操作,提升了查询效率。
由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据IO要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO转变成索引查找的顺序IO。
尽量避免使用外键约束
1、建议使用预编译语句进行数据库操作
预编译语句可以重复使用这些计划,减少 SQL 编译所需要的时间,还可以解决动态 SQL 所带来的 SQL 注入的问题;只传参数,比传递 SQL 语句更高效;相同语句可以一次解析,多次使用,提高处理效率。
2、避免数据类型的隐式转换
隐式转换会导致索引失效。如:select name,phone from customer where id = ‘111’;
3、充分利用表上已经存在的索引
如a like ‘%123%’,(如果无前置%,只有后置%,是可以用到列上的索引的)
如:有 a,b,c列的联合索引,在查询条件中有a列的范围查询,则在b,c列上的索引将不会被用到,在定义联合索引时,如果a列要用到范围查找的话,就要把a列放到联合索引的右侧。
使用left join或 not exists来优化not in操作
因为not in 也通常会使用索引失效。
4、数据库设计时,应该要对以后扩展进行考虑
5、程序连接不同的数据库使用不同的账号,进制跨库查询
6、禁止使用SELECT * 必须使用SELECT <字段列表> 查询
原因:
7、禁止使用不含字段列表的INSERT语句
如:insert into values (‘a’,’b’,’c’);
应使用insert into t(c1,c2,c3) values (‘a’,’b’,’c’);
8、避免使用子查询,可以把子查询优化为join操作
通常子查询在in子句中,且子查询中为简单SQL(不包含union、group by、order by、limit从句)时,才可以把子查询转化为关联查询进行优化。
子查询性能差的原因:
9、避免使用JOIN关联太多的表
对于 MySQL 来说,是存在关联缓存的,缓存的大小可以由 join_buffer_size 参数进行设置。
在 MySQL 中,对于同一个SQL多关联(join)一个表,就会多分配一个关联缓存,如果在一个SQL中关联的表越多,所占用的内存也就越大。
如果程序中大量的使用了多表关联的操作,同时join_buffer_size设置的也不合理的情况下,就容易造成服务器内存溢出的情况,就会影响到服务器数据库性能的稳定性。
同时对于关联操作来说,会产生临时表操作,影响查询效率Mysql最多允许关联61个表,建议不超过5个。
10、减少同数据库的交互次数
数据库更适合处理批量操作 合并多个相同的操作到一起,可以提高处理效率
11、对应同一列进行or判断时,使用in代替or
in的值不要超过500个in操作可以更有效的利用索引,or大多数情况下很少能利用到索引。
12、禁止使用order by rand() 进行随机排序
会把表中所有符合条件的数据装载到内存中,然后在内存中对所有数据根据随机生成的值进行排序,并且可能会对每一行都生成一个随机值,如果满足条件的数据集非常大,就会消耗大量的CPU和IO及内存资源。
推荐在程序中获取一个随机值,然后从数据库中获取数据的方式
13、WHERE从句中禁止对列进行函数转换和计算
对列进行函数转换或计算时会导致无法使用索引。
不推荐:
推荐:
14、在明显不会有重复值时使用UNION ALL而不是UNION
15、拆分复杂的大SQL为多个小SQL
1、超100万行的批量写(UPDATE、DELETE、INSERT)操作,要分批多次进行操作
主从环境中,大批量操作可能会造成严重的主从延迟,大批量的写操作一般都需要执行一定长的时间,而只有当主库上执行完成后,才会在其他从库上执行,所以会造成主库与从库长时间的延迟情况。
大批量写操作会产生大量日志,特别是对于row格式二进制数据而言,由于在row格式中会记录每一行数据的修改,我们一次修改的数据越多,产生的日志量也就会越多,日志的传输和恢复所需要的时间也就越长,这也是造成主从延迟的一个原因。
大批量修改数据,一定是在一个事务中进行的,这就会造成表中大批量数据进行锁定,从而导致大量的阻塞,阻塞会对MySQL的性能产生非常大的影响。
特别是长时间的阻塞会占满所有数据库的可用连接,这会使生产环境中的其他应用无法连接到数据库,因此一定要注意大批量写操作要进行分批。
2、对于大表使用pt-online-schema-change修改表结构
对大表数据结构的修改一定要谨慎,会造成严重的锁表操作,尤其是生产环境,是不能容忍的。
pt-online-schema-change 它会首先建立一个与原表结构相同的新表,并且在新表上进行表结构的修改,然后再把原表中的数据复制到新表中,并在原表中增加一些触发器。
把原表中新增的数据也复制到新表中,在行所有数据复制完成之后,把新表命名成原表,并把原来的表删除掉。
把原来一个DDL操作,分解成多个小的批次进行。
3、禁止为程序使用的账号赋予super权限
当达到最大连接数限制时,还运行1个有super权限的用户连接super权限只能留给DBA处理问题的账号使用。
4、对于程序连接数据库账号,遵循权限最小原则
程序使用数据库账号只能在一个DB下使用,不准跨库 程序使用的账号原则上不准有drop权限。
领取专属 10元无门槛券
私享最新 技术干货