判断问题SQL
判断SQL是否有问题时可以通过两个表象进行判断:
系统级别表象
CPU消耗严重
IO等待严重
页面响应时间过长
应用的日志出现超时等错误
可以使用sar命令,top命令查看当前系统状态。
也可以通过Prometheus、Grafana等监控工具观察系统状态。(感兴趣的可以翻看我之前的文章)
SQL语句表象
冗长
执行时间过长
从全表扫描获取数据
执行计划中的rows、cost很大
冗长的SQL都好理解,一段SQL太长阅读性肯定会差,而且出现问题的频率肯定会更高。更进一步判断SQL问题就得从执行计划入手,如下所示:
执行计划告诉我们本次查询走了全表扫描Type=ALL,rows很大(9950400)基本可以判断这是一段"有味道"的SQL。
获取问题SQL
不同数据库有不同的获取方法,以下为目前主流数据库的慢查询SQL获取工具
MySQL
慢查询日志
测试工具loadrunner
Percona公司的ptquery等工具
Oracle
AWR报告
测试工具loadrunner等
相关内部视图如v$
GRID CONTROL监控工具
达梦数据库
AWR报告
测试工具loadrunner等
达梦性能监控工具(dem)
相关内部视图如v$
SQL编写技巧
SQL编写有以下几个通用的技巧:
• 合理使用索引
索引少了查询慢;索引多了占用空间大,执行增删改语句的时候需要动态维护索引,影响性能选择率高(重复值少)且被where频繁引用需要建立B树索引;
一般join列需要建立索引;复杂文档类型查询采用全文索引效率更好;索引的建立要在查询和DML性能之间取得平衡;复合索引创建时要注意基于非前导列查询的情况
• 使用UNION ALL替代UNION
UNION ALL的执行效率比UNION高,UNION执行时需要排重;UNION需要对数据进行排序
• 避免select * 写法
执行SQL时优化器需要将 * 转成具体的列;每次查询都要回表,不能走覆盖索引。
• JOIN字段建议建立索引
一般JOIN字段都提前加上索引
• 避免复杂SQL语句
提升可阅读性;避免慢查询的概率;可以转换成多个短查询,用业务端处理
• 避免where 1=1写法
• 避免order by rand类似写法
RAND导致数据列被多次扫描
SQL优化
执行计划
完成SQL优化一定要先读执行计划,执行计划会告诉你哪些地方效率低,哪里可以需要优化。我们以MYSQL为例,看看执行计划是什么。(每个数据库的执行计划都不一样,需要自行了解)
explain sql
接下来我们用一段实际优化案例来说明SQL优化的过程及优化技巧。
优化案例
表结构
CREATE TABLE `a`
(
`id` int(11) NOT AUTO_INCREMENT,
`seller_id` bigint(20) DEFAULT ,
`seller_name` varchar(100) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT ,
`gmt_create` varchar(30) DEFAULT ,
PRIMARY KEY (`id`)
);
CREATE TABLE `b`
(
`id` int(11) NOT AUTO_INCREMENT,
`seller_name` varchar(100) DEFAULT ,
`user_id` varchar(50) DEFAULT ,
`user_name` varchar(100) DEFAULT ,
`sales` bigint(20) DEFAULT ,
`gmt_create` varchar(30) DEFAULT ,
PRIMARY KEY (`id`)
);
CREATE TABLE `c`
(
`id` int(11) NOT AUTO_INCREMENT,
`user_id` varchar(50) DEFAULT ,
`order_id` varchar(100) DEFAULT ,
`state` bigint(20) DEFAULT ,
`gmt_create` varchar(30) DEFAULT ,
PRIMARY KEY (`id`)
)
三张表关联,查询当前用户在当前时间前后10个小时的订单情况,并根据订单创建时间升序排列,具体SQL如下
select a.seller_id,
a.seller_name,
b.user_name,
c.state
from a,
b,
c
where a.seller_name = b.seller_name
and b.user_id = c.user_id
and c.user_id = 17
and a.gmt_create
BETWEEN DATE_ADD(NOW, INTERVAL – 600 MINUTE)
AND DATE_ADD(NOW, INTERVAL 600 MINUTE)
order by a.gmt_create;
查看数据量
原执行时间
原执行计划
初步优化思路
SQL中 where条件字段类型要跟表结构一致,表中user_id 为varchar(50)类型,实际SQL用的int类型,存在隐式转换,也未添加索引。将b和c表user_id 字段改成int类型;
因存在b表和c表关联,将b和c表user_id创建索引;
因存在a表和b表关联,将a和b表seller_name字段创建索引;
利用复合索引消除临时表和排序。
初步优化SQL
alter table b modify `user_id` int(10) DEFAULT ;
alter table c modify `user_id` int(10) DEFAULT ;
alter table c add index `idx_user_id`(`user_id`);
alter table b add index `idx_user_id_sell_name`(`user_id`,`seller_name`);
alter table a add index `idx_sellname_gmt_sellid`(`gmt_create`,`seller_name`,`seller_id`);
查看优化后执行时间
查看优化后执行计划
查看warnings信息
继续优化
alter table a modify "gmt_create" datetime DEFAULT ;
查看执行时间
查看执行计划
总结
查看执行计划 explain;
如果有告警信息,查看告警信息 show warnings;
查看SQL涉及的表结构和索引信息;
根据执行计划,思考可能的优化点;
按照可能的优化点执行表结构变更、增加索引、SQL改写等操作;
查看优化后的执行时间和执行计划
如果优化效果不明显,重复第四步操作。
领取专属 10元无门槛券
私享最新 技术干货