随着全球经济的发展和城市化、现代化进程的推动,交通运输行业将保持稳步发展状态。在政策上,各国均积极推进智能交通系统建设。在技术上,使用人工智能等高新技术实现智能交通。在产业上,加速交通产业生态圈的跨界融合,为出行者提供更加准确、完善和智能的服务。人工智能技术的出现为提升运输效率、保障运输安全和降低运输成本,最终实现智能交通带来了新的思路,在交通运输行业绽放光彩。作为行业中的领头羊,交通运输行业中多数世界500强企业已经着手部署相应的人工智能解决方案。
作者 | 解双羽、陆少游
一、交通运输行业市场规模
据统计,2017年全球交通运输行业总收入为4.8万亿美元,占全球GDP的6%。与此同时,交通运输行业基础设施投资也在逐年增加。PwC预测,从2014年至2025年,全球交通运输行业基础设施投资将以平均每年约5%的速度增长。
二、人工智能技术在交通运输行业的应用
深度学习:机器学习中一种基于对数据进行表征学习的算法。通过对大量历史数据(如图像、文本和声音)进行识别与分析,从而替代人力完成自动化操作。主要用于路况识别,高级驾驶辅助系统(ADAS),路线规划等。
语音识别与自然语言处理:指机器理解并解释人类写作、说话方式的能力,是人工智能技术的核心组成部分。从语音识别到文本分析,再到信息检索、信息抽取,自然语言处理涉及到处理文字、语音的各个方面。主要应用于服务领域,如车载娱乐系统、货物追踪系统等。
计算机视觉:基于图像处理的计算机视觉技术是通过摄像机获取场景图像,并借助于计算机软件构建一个自动化或半自动化的图像/视频理解和分析系统,从而模仿人的视觉功能以提供及时准确的图像/视频处理结果。在交通运输行业中,计算机视觉技术主要应用于路况检测,安检扫描,流量监控,值机登记等。
机器人技术:在交通运输行业,智能机器人可以代替传统人力完成重复琐碎的货物分拣、搬运、包装等工作,极大地减轻了人类繁重的体力劳动,提高了运输效率。根据不同的应用场景,具体可以分为AGV机器人、码垛机器人、分拣机器人。
大数据分析:大数据分析技术主要通过对大量非结构化或结构化数据进行分析,利用算法探索数据间的未知联系和隐藏信息,从而帮助决策和判断。从运输设备的维护预测到运输过程中的路线优化、时间预测,这些服务或功能都离不开大数据技术的支持。
三、人工智能技术在交通运输行业的应用分布
四、500强公司人工智能技术落地案例简述
马士基航运:通过在冰级集装箱船(Winter Palace ice-class container ship)上使用人工智能情景感知技术,提高船舶的安全性、效率和可靠性的同时帮助海员消除来自船桥的视线限制,为未来的自动防撞系统提供研究基础。
美国联合航空公司:通过使用霍尼韦尔提供的IntuVue RDR-4000 三维气象雷达系统、SmartRunway智能跑道系统和SmartLanding智能着陆系统,向飞行员及时提供飞行环境信息,同时增强飞行员在滑行、起飞和着陆过程中的情景感知能力。
DHL:全面部署物流机器人系统。Sawyer协作机器人可以通过高分辨率摄像机、压力传感器和自学习功能帮助仓库工作人员自动化操作重复性任务。LocusBots机器人可以通过机器学习算法自助规划最佳行驶路径,代替工作人员将货物运送到指定位置,减少了工作人员的走动距离。PostBOT机器人内置传感器,可以在城市周围避开障碍物,并能沿着路线安全地跟着快递员完成送货服务。
达美航空:通过使用空客提供的智慧天空开放性数据平台及相关预测性维护服务,达美航空可以预测飞机部件的故障概率,在部件出现问题前进行维护。从2013年到2017年,达美航空全年免于因维护而取消航班总计从169天升至324天,成功率高达95%。
美国邮政署:通过采用协调优化技术(COTs),综合利用数据分析、物联网、云端数据库、机器学习等技术或软件平台优化投递路线,预测潜在问题,实现部份平日投递路线上的当日寄送,使包裹递送更加高效、灵活。
五、人工智能技术在交通运输行业的发展局限
1. 投入收益不确定性:使用人工智能技术解决方案往往需要较长时间才能获得明显受益,巨额的前期投入导致转换应用成本高昂。
2. 流程架构重建风险性:交通运输行业属于劳动密集型行业,人工智能技术的应用在提升行业自动化的同时也不可避免地增添了相关从业人员失业的风险。
3. 科技融合差异性:交通运输行业涉及客运货运、水陆空多种运输场景,针对某一场景或企业的人工智能技术解决方案往往不能通用。
六、人工智能技术在交通运输行业的发展趋势
1. 全面无人化:在仓储环节,机器人取代传统人力完成货物分拣、搬运等操作;在运输环节,使用无人驾驶技术实现交通运输自动化;在服务环节,自助值机、安检、过关成为可能。
2. 出行服务化:在深刻理解公众出行需求的基础上,通过将各种交通模式全部整合在统一的服务体系与平台中,从而充分利用大数据决策,调配最优资源,为用户规划包括多种交通模式实时信息在内的无缝衔接出行路径,并以统一的APP来对外提供服务。
特别鸣谢
菜鸟网络 高级算法专家 本华
* 本文为「智周」系列报告「核心版」,相应「深度版」的推出计划将在后续公布,敬请大家关注。针对「交通运输行业人工智能应用现状及展望」这一主题,有哪些方向或主题,你希望在报告深度版中读到更详细的阐述与分析,欢迎留言,这将成为我们制作报告深度版的重要参考。
领取专属 10元无门槛券
私享最新 技术干货