MATLAB 神经网络变量筛选—基于BP的神经网络变量筛选
BP (Back Propagation)神经网络是一种神经网络学习算法,全称基于误差反向传播算法的人工神经网络。
单隐层前馈网络拓扑结构,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元。
中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构。
最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,够成具有层次结构的前馈型神经网络系统。
单层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
壹
01
神经网络算法程序
%%神经网络变量筛选—基于BP的神经网络变量筛选
%% 清空环境变量
clc
clear
%% 产生输入 输出数据
% 设置步长
interval=0.01;
% 产生x1 x2
x1=-1.5:interval:1.5;
x2=-1.5:interval:1.5;
% 产生x3 x4(噪声)
x=rand(1,301);
x3=(x-0.5)*1.5*2;
x4=(x-0.5)*1.5*2;
贰
01
训练
% 按照函数先求得相应的函数值,作为网络的输出。
F =20+x1.^2-10*cos(2*pi*x1)+x2.^2-10*cos(2*pi*x2);
%设置网络输入输出值
p=[x1;x2;x3;x4];
t=F;
%% 变量筛选 MIV算法的初步实现(增加或者减少自变量)
p=p';
[m,n]=size(p);
yy_temp=p;
% p_increase为增加10%的矩阵 p_decrease为减少10%的矩阵
for i=1:n
p=yy_temp;
pX=p(:,i);
pa=pX*1.1;
p(:,i)=pa;
aa=['p_increase' int2str(i) '=p'];
eval(aa);
end
for i=1:n
p=yy_temp;
pX=p(:,i);
pa=pX*0.9;
p(:,i)=pa;
aa=['p_decrease' int2str(i) '=p'];
eval(aa);
end
02
%% 利用原始数据训练一个正确的神经网络
nntwarn off;
p=p';
% bp网络建立
net=newff(minmax(p),[8,1],{'tansig','purelin'},'traingdm');
% 初始化bp网络
net=init(net);
% 网络训练参数设置
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.mc=0.9;
net.trainParam.epochs=2000;
% bp网络训练
net=train(net,p,t);
%% 变量筛选 MIV算法的后续实现(差值计算)
% 转置后sim
for i=1:n
eval(['p_increase',num2str(i),'=transpose(p_increase',num2str(i),')'])
end
for i=1:n
eval(['p_decrease',num2str(i),'=transpose(p_decrease',num2str(i),')'])
end
03
% result_in为增加10%后的输出 result_de为减少10%后的输出
for i=1:n
eval(['result_in',num2str(i),'=sim(net,','p_increase',num2str(i),')'])
end
for i=1:n
eval(['result_de',num2str(i),'=sim(net,','p_decrease',num2str(i),')'])
end
for i=1:n
eval(['result_in',num2str(i),'=transpose(result_in',num2str(i),')'])
end
for i=1:n
eval(['result_de',num2str(i),'=transpose(result_de',num2str(i),')'])
end
%% MIV的值为各个项网络输出的MIV值 MIV被认为是在神经网络中评价变量相关的最好指标之一,其符号代表相关的方向,绝对值大小代表影响的相对重要性。
for i=1:n
IV= ['result_in',num2str(i), '-result_de',num2str(i)];
eval(['MIV_',num2str(i) ,'=mean(',IV,')'])
end
04
仿真结果图
具体仿真程序链接,微信公众号回复【神经网络】即可获得链接。
未
完
待
续
领取专属 10元无门槛券
私享最新 技术干货