在观看本文之前,请答应我要善良。昨天预告了下,发现很多同学对这个模型都表示出兴趣,甚至有好多同学后台发来照片让我帮他们脱裤子。授人以鱼不如授人以渔,请这些同学自行操作哈~
01
效果演示
本文案例使用的是开源项目instagan,是一种比较新的gan模型建模原理,来自2019年ICLR的论文,下面看下效果对照:
(出于人道主义,会把人物的长裤脱掉然后换上短裙)
① 原图
② 转换后的图片
02
环境配置
首先玩这个模型需要两个前提条件:
有梯子
python3.6版本
有GPU环境(因为源代码是要求必须在GPU的Cuda环境下运行,如果没有GPU的同学推荐用PAI里面的DSW:https://data.aliyun.com/product/learn ,比较便宜 )
(1)下载实验代码:https://github.com/sangwoomo/instagan
(2)下载pre-trained model,如果只是实验就直接用训练好的模型即可:https://drive.google.com/drive/folders/1xb9rR21MhMVselc6HTmOr73WOkOviFmO
(如果只玩换裤子这个实验,下载pants2skirt_mhp_instagan这个模型即可)
(3)安装代码中的requirement.txt中的依赖包
最后把下载的model文件放到代码文件的根目录下,目录结构如下(蓝色部分为模型文件夹,里面是200_net_G_A.pth和200_net_G_B.pth):
完成以上步骤,整个环境就搭建好了。
03
使用模型做图片转换
注:这个项目的代码有很多hard code的逻辑,需要严格按照下面的做法执行才有可能跑通,包括所有文件的命名。
(1)先设置需要转换的图片
在datasets目录下新增一个test文件夹,构建如下的文件格式
testA和testB存放需要转换的原图,类似于“效果演示中”穿着长裤的图片,testA_seg和testB_seg需要存放mask图片。mask文件是转换图片中的裤子样式,如下图对应实例图片左边的女生裤子(如果想转换其它部位,就不用我举例子了吧):
mask图片还需要与被转换图片命名一致,详细规则参见源代码中的datasets,如果不一致会出现以下错误:https://github.com/sangwoomo/instagan/issues/5
(2)执行图片转换逻辑
在工程的根目录下执行以下代码,使用工程下的test.py这个测试代码:
python test.py --dataroot ./datasets/test --model instagan --name pants2skirt_mhp_instagan --loadSizeH 240 --loadSizeW 160 --fineSizeH 240 --fineSizeW 160 --ins_per 2 --ins_max 20
如果没有报错的话在GPU环境下1分钟就可以执行完毕,代码执行完毕后在工程的results文件夹下就能看到转换好的图片了。
04
总结
整个项目的效果还是不错的,特别好玩,随便弄一个图片都能把裤子换掉。不过可能代码还没来得及优化,在实验的过程中有很多坑,大家需要一定的debug能力才能把工程跑起来,小白不太建议使用哈。
珍惜每一刻每一秒
去充实自己
微信号:凡人机器学习
领取专属 10元无门槛券
私享最新 技术干货