首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

爬虫进阶Python多线程和多进程

Python多线程,thread标准库。都说Python的多线程是鸡肋,推荐使用多进程。

Python为了安全考虑有一个GIL每个CPU在同一时间只能执行一个线程

GIL的全称是Global Interpreter Lock(全局解释器锁),就相当于通行证,每一次线程会先要去申请通行证,通行证申请下来了,才能进入CPU执行。

每个线程的执行方式:

1、获取GIL

2、执行代码直到sleep或者是python虚拟机将其挂起。

3、释放GIL

每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。

下面使用多线程加队列做的一个demo。爬取的是笔趣阁的小说,只是做了一个打印,没有做具体的保存。爬取用的selenium。Chrome的无头模式。有点慢,可以直接用库,或者跑整站的话用scrapy.

使用Threading模块创建线程,直接从threading.Thread继承,然后重写init方法和run方法:

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程”set”从后向前把所有元素改成1,而线程”print”负责从前往后读取列表并打印。

那么,可能线程”set”开始改的时候,线程”print”便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如”set”要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print”获得锁定了,那么就让线程”set”暂停,也就是同步阻塞;等到线程”print”访问完毕,释放锁以后,再让线程”set”继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程优先级队列

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

Queue.qsize() 返回队列的大小

Queue.empty() 如果队列为空,返回True,反之False

Queue.full() 如果队列满了,返回True,反之False

Queue.full 与 maxsize 大小对应

Queue.get([block[, timeout]])获取队列,timeout等待时间

Queue.get_nowait() 相当Queue.get(False)

Queue.put(item) 写入队列,timeout等待时间

Queue.put_nowait(item) 相当Queue.put(item, False)

Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号

Queue.join() 实际上意味着等到队列为空,再执行别的操作

上面的例子用了FIFO队列。当然你也可以换成其他类型的队列.

后进先出

优先队列

Python多进程,multiprocessing,下次使用多进程跑这个代码。

参考:https://cuiqingcai.com/3325.html

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190103G0B4X900?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券