首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Elasticsearch学习,请先看这一篇!-1

0. 带着问题上路——ES是如何产生的?

(1)思考:大规模数据如何检索?

如:当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:

1)用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…)

2)如何解决单点故障;(lvs、F5、A10、Zookeep、MQ)

3)如何保证数据安全性;(热备、冷备、异地多活)

4)如何解决检索难题;(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;)

5)如何解决统计分析问题;(离线、近实时)

(2)传统数据库的应对解决方案

对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈:

解决要点:

1)通过主从备份解决数据安全性问题;

2)通过数据库代理中间件心跳监测,解决单点故障问题;

3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果

(3)非关系型数据库的解决方案

对于Nosql数据库,以mongodb为例,其它原理类似:

解决要点:

1)通过副本备份保证数据安全性;

2)通过节点竞选机制解决单点问题;

3)先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181225A0WHAU00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券