Go 语言的异常处理语法绝对是独树一帜,在我见过的诸多高级语言中,Go 语言的错误处理形式就是一朵奇葩。一方面它鼓励你使用 C 语言的形式将错误通过返回值来进行传递,另一方面它还提供了高级语言一般都有的异常抛出和捕获的形式,但是又不鼓励你使用这个形式。后面我们统一将返回值形式的称为「错误」,将抛出捕获形式的称为「异常」。
Go 语言的错误处理在业界饱受批评,不过既然我们已经入了这个坑,那还是好好蹲着吧。
错误接口
Go 语言规定凡是实现了错误接口的对象都是错误对象,这个错误接口只定义了一个方法。
注意这个接口的名称,它是小写的,是内置的全局接口。通常一个名字如果是小写字母开头,那么它在包外就是不可见的,不过 error 是内置的特殊名称,它是全局可见的。
编写一个错误对象很简单,写一个结构体,然后挂在 Error() 方法就可以了。
对于上面代码中错误对象的形式非常常用,所以 Go 语言内置了一个通用错误类型,在 errors 包里。这个包还提供了一个 New() 函数让我们方便地创建一个通用错误。
注意这个结构体 errorString 是首字母小写的,意味着我们无法直接使用这个类型的名字来构造错误对象,而必须使用 New() 函数。
如果你的错误字符串需要定制一些参数,可使用 fmt 包提供了 Errorf 函数
错误处理首体验
在 Java 语言里,如果遇到 IO 问题通常会抛出 IOException 类型的异常,在 Go 语言里面它不会抛异常,而是以返回值的形式来通知上层逻辑来处理错误。下面我们通过读文件来尝试一下 Go 语言的错误处理,读文件需要使用内置的 os 包。
在这段代码里有几个点需要特别注意。第一个需要注意的是 os.Open()、f.Read() 函数返回了两个值,Go 语言不但允许函数返回两个值,三个值四个值都是可以的,只不过 Go 语言普遍没有使用多返回值的习惯,仅仅是在需要返回错误的时候才会需要两个返回值。除了错误之外,还有一个地方需要两个返回值,那就是字典,通过第二个返回值来告知读取的结果是零值还是根本就不存在。
第二个需要注意的是 defer 关键字,它将文件的关闭调用推迟到当前函数的尾部执行,即使后面的代码抛出了异常,文件关闭也会确保被执行,相当于 Java 语言的 finally 语句块。defer 是 Go 语言非常重要的特性,在日常应用开发中,我们会经常使用到它。
第三个需要注意的地方是 append 函数参数中出现了 … 符号。在切片章节,我们知道 append 函数可以将单个元素追加到切片中,其实 append 函数可以一次性追加多个元素,它的参数数量是可变的。
但是读文件的代码中需要将整个切片的内容追加到另一个切片中,这时候就需要 … 操作符,它的作用是将切片参数的所有元素展开后传递给 append 函数。你可能会担心如果切片里有成百上千的元素,展开成元素再传递会不会非常耗费性能。这个不必担心,展开只是形式上的展开,在实现上其实并没有展开,传递过去的参数本质上还是切片。
第四个需要注意的地方是读文件操作 f.Read() ,它会将文件的内容往切片里填充,填充的量不会超过切片的长度(注意不是容量)。如果将缓冲改成下面这种形式,就会死循环!
另外如果遇到文件尾了,切片就不会填满。所以需要通过返回值 n 来明确到底读了多少字节。
体验 Redis 的错误处理
上面读文件的例子并没有让读者感受到错误处理的不爽,下面我们要引入 Go 语言 Redis 的客户端包,来真实体验一下 Go 语言的错误处理有多让人不快。
使用第三方包,需要使用 go get 指令下载这个包,该指令会将第三方包放到 GOPATH 目录下。
下面我要实现一个小功能,获取 Redis 中两个整数值,然后相乘,再存入 Redis 中
因为 Go 语言中不轻易使用异常语句,所以对于任何可能出错的地方都需要判断返回值的错误信息。上面代码中除了访问 Redis 需要判断之外,字符串转整数也需要判断。
另外还有一个需要特别注意的是因为字符串的零值是空串而不是 nil,你不好从字符串内容本身判断出 Redis 是否存在这个 key 还是对应 key 的 value 为空串,需要通过返回值的错误信息来判断。代码中的 redis.Nil 就是客户端专门为 key 不存在这种情况而定义的错误对象。
相比于写习惯了 Python 和 Java 程序的朋友们来说,这样繁琐的错误判断简直太地狱了。不过还是那句话,习惯了就好。
异常与捕捉
Go 语言提供了 panic 和 recover 全局函数让我们可以抛出异常、捕获异常。它类似于其它高级语言里常见的 throw try catch 语句,但是又很不一样,比如 panic 函数可以抛出来任意对象。下面我们看一个使用 panic 的例子
上面的代码抛出了 negErr,直接导致了程序崩溃,程序最后打印了异常堆栈信息。下面我们使用 recover 函数来保护它,recover 函数需要结合 defer 语句一起使用,这样可以确保 recover() 逻辑在程序异常的时候也可以得到调用。
输出结果中的异常堆栈信息没有了,说明捕获成功了,不过即使程序不再崩溃,异常点后面的逻辑也不会再继续执行了。上面的代码中需要注意的是我们使用了匿名函数 func() {…}
尾部还有个括号是怎么回事,为什么还需要这个括号呢?它表示对匿名函数进行了调用。对比一下前面写的文件关闭尾部的括号就能理解了
还有个值得注意的地方时,panic 抛出的对象未必是错误对象,而 recover() 返回的对象正是 panic 抛出来的对象,所以它也不一定是错误对象。
我们经常还需要对 recover() 返回的结果进行判断,以挑选出我们愿意处理的异常对象类型,对于那些不愿意处理的,可以选择再次抛出来,让上层来处理。
异常的真实应用
Go 语言官方表态不要轻易使用 panic recover,除非你真的无法预料中间可能会发生的错误,或者它能非常显著地简化你的代码。简单一点说除非逼不得已,否则不要使用它。
在一个常见的 Web 应用中,不能因为个别 URL 处理器抛出异常而导致整个程序崩溃,就需要在每个 URL 处理器外面包括一层 recover() 来恢复异常。
图片
在 json 序列化过程中,逻辑上需要递归处理 json 内部的各种类型,每一种容器类型内部都可能会遇到不能序列化的类型。如果对每个函数都使用返回错误的方式来编写代码,会显得非常繁琐。所以在内置的 json 包里也使用了 panic,然后在调用的最外层包裹了 recover 函数来进行恢复,最终统一返回一个 error 类型。
图片
你可以想象一下,内置 json 包的开发者在设计开发这个包的时候应该也是纠结的焦头烂额,最终还是使用了 panic 和 recover 来让自己的代码变的好看一些。
多个 defer 语句
有时候我们需要在一个函数里使用多次 defer 语句。比如拷贝文件,需要同时打开源文件和目标文件,那就需要调用两次 defer f.Close()。
需要注意的是 defer 语句的执行顺序和代码编写的顺序是反过来的,也就是说最先 defer 的语句最后执行,为了验证这个规则,我们来改写一下上面的代码
下一节我们开讲 Go 语言最重要的特色功能 —— 通道与协程
阅读《快学 Go 语言》更多章节,扫一扫关注公众号「码洞」
领取专属 10元无门槛券
私享最新 技术干货