首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

对于大数据技术,需要的数学知识有哪些?

谈起大数据技术,很多人都觉得是高大上的一门技术,学起来应该是困难重重!其实对于大数据技术而言,难的不是大数据技术本身,而是需要太多的基础知识,比如说:数学知识、英语能力、编程基础等等。

数学,我们从小就开始学习,一直在跟各种数据打交道,各种公式等等,是大数据学习的必备技术之一。英语,对于大数据技术文章,比较先进的还是外文比较多,需要一定的英语基础,当然了翻译软件是个好东西,但必要的英语能力也是必须的。编程,这个就不用我多说了吧,计算机语言,你学不会,该如何向电脑发布指令!

好了,回归我们今天的重点,先说说对于大数据技术,需要的数学知识有哪些?!

(1)概率论与数理统计

这部分与大数据技术开发的关系非常密切,条件概率、独立性等基本概念、随机变量及其分布、多维随机变量及其分布、方差分析及回归分析、随机过程(特别是Markov)、参数估计、Bayes理论等在大数据建模、挖掘中就很重要。

当然以概率论为基础的信息论在大数据分析中也有一定作用,比如信息增益、互信息等用于特征分析的方法都是信息论里面的概念。

(2)线性代数

这部分的数学知识与大数据技术开发的关系也很密切,矩阵、转置、秩 分块矩阵、向量、正交矩阵、向量空间、特征值与特征向量等在大数据建模、分析中也是常用的技术手段。

在互联网大数据中,许多应用场景的分析对象都可以抽象成为矩阵表示,大量Web页面及其关系、微博用户及其关系、文本集中文本与词汇的关系等等都可以用矩阵表示。比如对于Web页面及其关系用矩阵表示时,矩阵元素就代表了页面a与另一个页面b的关系,这种关系可以是指向关系,1表示a和b之间有超链接,0表示a,b之间没有超链接。著名的PageRank算法就是基于这种矩阵进行页面重要性的量化,并证明其收敛性。

以矩阵为基础的各种运算,如矩阵分解则是分析对象特征提取的途径,因为矩阵代表了某种变换或映射,因此分解后得到的矩阵就代表了分析对象在新空间中的一些新特征。所以,奇异值分解SVD、PCA、NMF、MF等在大数据分析中的应用是很广泛的。

(3)最优化方法

模型学习训练是很多分析挖掘模型用于求解参数的途径,基本问题是:给定一个函数f:AR,寻找一个元素a0∈A,使得对于所有A中的a,f(a0)≤f(a)(最小化);或者f(a0)≥f(a)(最大化)。优化方法取决于函数的形式,从目前看,最优化方法通常是基于微分、导数的方法,例如梯度下降、爬山法、最小二乘法、共轭分布法等。

(4)离散数学

离散数学的重要性就不言而喻了,它是所有计算机科学分支的基础,自然也是大数据技术的重要基础。

好了,终于总结完了,漫漫长路,继续学习吧!

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181106A04R2U00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券