首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

现代统计学的基础和核心之一,假设检验法

大数据观察

了解大数据,关注大数据观察吧!

每个想了解最新大数据资讯的人,都关注了我

文 / 数据君

假设检验(Hypothesis Test)是现代统计学的基础和核心之一,其主要研究在一定的条件下,总体是否具备某些特定特征。

假设检验的基本原理就是小概率事件原理,即观测小概率事件在假设成立的情况下是否发生。

如果在一次试验中,小概率事件发生了,那么说明假设在一定的显著性水平下不可靠或者不成立;

如果在一次试验中,小概率事件没有发生,那么也只能说明没有足够理由相信假设是错误的,但是也并不能说明假设是正确的,因为无法收集到所有的证据来证明假设是正确的。

假设检验的结论是在一定的显著性水平下得出的。因此,当采用此方法观测事件并下结论时,有可能会犯错。

这些错误主要有两大类:

第Ⅰ类错误:当原假设为真时,却否定它而犯的错误,即拒绝正确假设的错误,也叫弃真错误。犯第Ⅰ类错误的概率记为α,通常也叫α错误,α=1-置信度。

第Ⅱ类错误:当原假设为假时,却肯定它而犯的错误,即接受错误假设的错误,也叫纳伪错误。犯第Ⅱ类错误的概率记为β,通常也叫β错误。

上述这两类错误在其他条件不变的情况下是相反的,即α增大时,β就减小;α减小时,β就增大。

α错误容易受数据分析人员的控制,因此在假设检验中,通常会先控制第Ⅰ类错误发生的概率α。

具体表现为:在做假设检验之前先指定一个α的具体数值,通常取0.05,也可以取0.1或0.001。

在数据化运营的商业实践中,假设检验最常用的场景就是用于“运营效果的评估”上。

主题 |假设检验法

插图 | 网络来源

作 者 介 绍

数据君:)

了解大数据,关注大数据观察

部分图文来自网络,侵权则删

我想给你一个理由 继续面对这操蛋的生活

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181025B171QJ00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券