首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习——决策树

决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值

导入类库

简单版

正式版

泰坦尼克生存率决策

(Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法。

决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树型的分类模型。树中的每个非叶子节点记录了使用哪个特征来进行类别的判断,每个叶子节点则代表了最后判断的类别。根节点到每个叶子节点均形成一条分类的路径规则。而对新的样本进行测试时,只需要从根节点开始,在每个分支节点进行测试,沿着相应的分支递归地进入子树再测试,一直到达叶子节点,该叶子节点所代表的类别即是当前测试样本的预测类别

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181007G0H32P00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券