首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

应用 4:四两拨千斤——Redis HyperLogLog

在开始这一节之前,我们先思考一个常见的业务问题:如果你负责开发维护一个大型的网站,有一天老板找产品经理要网站每个网页每天的 UV 数据,然后让你来开发这个统计模块,你会如何实现?

如果统计 PV 那非常好办,给每个网页一个独立的 Redis 计数器就可以了,这个计数器的 key 后缀加上当天的日期。这样来一个请求,incrby 一次,最终就可以统计出所有的 PV 数据。

但是 UV 不一样,它要去重,同一个用户一天之内的多次访问请求只能计数一次。这就要求每一个网页请求都需要带上用户的 ID,无论是登陆用户还是未登陆用户都需要一个唯一 ID 来标识。

你也许已经想到了一个简单的方案,那就是为每一个页面一个独立的 set 集合来存储所有当天访问过此页面的用户 ID。当一个请求过来时,我们使用 sadd 将用户 ID 塞进去就可以了。通过 scard 可以取出这个集合的大小,这个数字就是这个页面的 UV 数据。没错,这是一个非常简单的方案。

但是,如果你的页面访问量非常大,比如一个爆款页面几千万的 UV,你需要一个很大的 set 集合来统计,这就非常浪费空间。如果这样的页面很多,那所需要的存储空间是惊人的。为这样一个去重功能就耗费这样多的存储空间,值得么?其实老板需要的数据又不需要太精确,105w 和 106w 这两个数字对于老板们来说并没有多大区别,So,有没有更好的解决方案呢?

这就是本节要引入的一个解决方案,Redis 提供了 HyperLogLog 数据结构就是用来解决这种统计问题的。HyperLogLog 提供不精确的去重计数方案,虽然不精确但是也不是非常不精确,标准误差是 0.81%,这样的精确度已经可以满足上面的 UV 统计需求了。

HyperLogLog 数据结构是 Redis 的高级数据结构,它非常有用,但是令人感到意外的是,使用过它的人非常少。

使用方法

HyperLogLog 提供了两个指令 pfadd 和 pfcount,根据字面意义很好理解,一个是增加计数,一个是获取计数。pfadd 用法和 set 集合的 sadd 是一样的,来一个用户 ID,就将用户 ID 塞进去就是。pfcount 和 scard 用法是一样的,直接获取计数值。

简单试了一下,发现还蛮精确的,一个没多也一个没少。接下来我们使用脚本,往里面灌更多的数据,看看它是否还可以继续精确下去,如果不能精确,差距有多大。人生苦短,我用 Python!Python 脚本走起来!

当然 Java 也不错,大同小异,下面是 Java 版本:

我们来看下输出:

当我们加入第 100 个元素时,结果开始出现了不一致。接下来我们将数据增加到 10w 个,看看总量差距有多大。

Java 版:

跑了约半分钟,我们看输出:

差了 277 个,按百分比是 0.277%,对于上面的 UV 统计需求来说,误差率也不算高。然后我们把上面的脚本再跑一边,也就相当于将数据重复加入一边,查看输出,可以发现,pfcount 的结果没有任何改变,还是 99723,说明它确实具备去重功能。

pfadd 这个 pf 是什么意思?

它是 HyperLogLog 这个数据结构的发明人 Philippe Flajolet 的首字母缩写,老师觉得他发型很酷,看起来是个佛系教授。

pfmerge 适合什么场合用?

HyperLogLog 除了上面的 pfadd 和 pfcount 之外,还提供了第三个指令 pfmerge,用于将多个 pf 计数值累加在一起形成一个新的 pf 值。

比如在网站中我们有两个内容差不多的页面,运营说需要这两个页面的数据进行合并。其中页面的 UV 访问量也需要合并,那这个时候 pfmerge 就可以派上用场了。

注意事项

HyperLogLog 这个数据结构不是免费的,不是说使用这个数据结构要花钱,它需要占据一定 12k 的存储空间,所以它不适合统计单个用户相关的数据。如果你的用户上亿,可以算算,这个空间成本是非常惊人的。但是相比 set 存储方案,HyperLogLog 所使用的空间那真是可以使用千斤对比四两来形容了。

不过你也不必过于担心,因为 Redis 对 HyperLogLog 的存储进行了优化,在计数比较小时,它的存储空间采用稀疏矩阵存储,空间占用很小,仅仅在计数慢慢变大,稀疏矩阵占用空间渐渐超过了阈值时才会一次性转变成稠密矩阵,才会占用 12k 的空间。

HyperLogLog 实现原理

HyperLogLog 的使用非常简单,但是实现原理比较复杂,如果读者没有特别的兴趣,下面的内容暂时可以跳过不看。

为了方便理解 HyperLogLog 的内部实现原理,我画了下面这张图

这张图的意思是,给定一系列的随机整数,我们记录下低位连续零位的最大长度 k,通过这个 k 值可以估算出随机数的数量。首先不问为什么,我们编写代码做一个实验,观察一下随机整数的数量和 k 值的关系。

Java 版:

运行观察输出:

通过这实验可以发现 K 和 N 的对数之间存在显著的线性相关性:

如果 N 介于 2^K 和 2^(K+1) 之间,用这种方式估计的值都等于 2^K,这明显是不合理的。这里可以采用多个 BitKeeper,然后进行加权估计,就可以得到一个比较准确的值。

下面是 Java 版:

代码中分了 1024 个桶,计算平均数使用了调和平均 (倒数的平均)。普通的平均法可能因为个别离群值对平均结果产生较大的影响,调和平均可以有效平滑离群值的影响。

观察脚本的输出,误差率控制在百分比个位数:

真实的 HyperLogLog 要比上面的示例代码更加复杂一些,也更加精确一些。上面的这个算法在随机次数很少的情况下会出现除零错误,因为 maxbits=0 是不可以求倒数的。

pf 的内存占用为什么是 12k?

我们在上面的算法中使用了 1024 个桶进行独立计数,不过在 Redis 的 HyperLogLog 实现中用到的是 16384 个桶,也就是 2^14,每个桶的 maxbits 需要 6 个 bits 来存储,最大可以表示 maxbits=63,于是总共占用内存就是2^14 * 6 / 8 = 12k字节。

思考 & 作业

尝试将一堆数据进行分组,分别进行计数,再使用 pfmerge 合并到一起,观察 pfcount 计数值,与不分组的情况下的统计结果进行比较,观察有没有差异。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180917G0N2C300?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券