首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow入门教程——特征点检测案例

特征点检测的应用有很多种,比如人脸特征点检测,人体骨架特征点检测,人体运动特征点检测等。今天我就以人脸特征点为例,通过卷积神经网络来实现检测。

1、准备数据

人脸数据是非常丰富的,我用的是kaggle上人脸特征检测数据,下载地址:https://www.kaggle.com/c/facial-keypoints-detection。这个数据中有一些值是缺失的,是无法使用的,需要将这些值去除。

2、网络模型搭建

网络模型采用目前比较通用的VGG模型,代码我就不给出来了,我把模型结构图分享给大家。

3、训练网络模型

搭建完成模型后,我们就可以训练模型了。我训练了20000次,损失函数结果如图。可以看到loss的值已经是非常低了。

4、测试集上检测

训练完模型后,我们需要在测试集上去做特征点的检测。我给出几张图的结果,从这上面可以看出结果还是不错的。

为了进一步表明模型的检测能力,我对NBA球星头像进行了检测,结果显示也还不错。

为了方便大家更高效地学习,我将代码进行了整理并更新到Github上,

地址:https://github.com/junqiangchen/FeaturePointDetection

如果大家觉得这个项目还不错,希望大家给个Star并Fork,可以让更多的人学习。如果有任何问题,随时给我留言我会及时回复的。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180713G1GSS900?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券