目录:
感受野的概念
感受野的例子
感受野的计算
计算VGG16网络每层的感受野
Reference
1. 感受野的概念
在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域,如图1所示。
图1:用图形理解感受野概念
2.感受野的例子
(1)两层3*3的卷积核卷积操作之后的感受野是5*5,其中卷积核(filter)的步长(stride)为1、padding为0,如图2所示:
图2:两层3*3卷积核操作之后的感受野是5*5
(2)三层3*3卷积核操作之后的感受野是7*7,其中卷积核的步长为1,padding为0,如图3所示:
图3:三层3*3卷积核操作之后的感受野是7*7
3.感受野的计算
感受野计算时有下面几个知识点需要知道:
最后一层(卷积层或池化层)输出特征图感受野的大小等于卷积核的大小。
第i层卷积层的感受野大小和第i层的卷积核大小和步长有关系,同时也与第(i+1)层感受野大小有关。
计算感受野的大小时忽略了图像边缘的影响,即不考虑padding的大小。
关于感受野大小的计算方式是采用从最后一层往下计算的方法,即先计算最深层在前一层上的感受野,然后逐层传递到第一层,使用的公式可以表示如下:
其中,是第i层的感受野,是第(i+1)层上的感受野,stride是卷积的步长,Ksize是本层卷积核的大小。
4.计算VGG16网络每层的感受野
(1)引例
VGG16网络有点复杂,我们先来计算一个简单的例子,先学会计算感受野,在来分析复杂的网络。
图4:简单的网络结构
我们从最后一层的池化层开始计算感受野:
pool3:RF=2(最后一层池化层输出特征图的感受野大小等于卷积核的大小)
conv4:RF=(2-1)*1+3=4。
conv3:RF=(4-1)*1+3=6。
pool2:RF=(6-1)*2+2=12。
conv2:RF=(12-1)*1+3=14。
pool1:RF=(14-1)*2+2=28。
conv1:RF=(28-1)*1+3=30。
因此,pool3输出的特征图在输入图片上的感受野为30*30。
(2)VGG16网络每层感受野计算
图5:VGG16网络结构
在VGG16网络中,我们从全连接层开始倒推,直到输入层,过程如下:
pool5:RF=2。(最后一层池化层输出特征图感受野的大小等于卷积核的大小)
conv5_3:RF=(2-1)* 2+2=4。
conv5_2:RF=(4-1)*1+3=6。
conv5_1:RF=(6-1)*1+3=8。
pool4:RF=(8-1)*2+2=16。
... ... ... ... ... ... ...
类推...
因此我们可以得出:pool5输出的特征图在输入图片上的感受野为212*212;conv5_3输出的特征图在输入图片上的感受野为196*196,其它层依次类推。
图6:VGG16网络感受野计算结果
5.Reference
【1】卷积神经网络物体检测之感受野大小计算 - machineLearning - 博客园
http://www.cnblogs.com/objectDetect/p/5947169.html
【2】对CNN感受野一些理解 - CSDN博客
【3】感受野的详细介绍 - CSDN博客
【4】无痛理解CNN中的感受野receptive field
https://zhuanlan.zhihu.com/p/22627224
【5】Receptive field(感受野)
https://www.jianshu.com/p/2b968e7a1715
【6】CNN中感受野的计算 - CSDN博客
领取专属 10元无门槛券
私享最新 技术干货