重点研究将深度学习技术应用于藏文分词任务,采用多种深度神经网络模型,包括循环神经网络(RNN)、双向循环神经网络(Bi RNN)、层叠循环神经网络(Stacked RNN)、长短期记忆模型(LSTM)和编码器-标注器长短期记忆模型(Encoder-LabelerLSTM)。多种模型在以法律文本、政府公文、新闻为主的分词语料中进行实验,实验数据表明,编码器-标注器长短期记忆模型得到的分词结果最好,分词准确率可以达到92.96%,召回率为93.30%,F值为93.13%。
领取专属 10元无门槛券
私享最新 技术干货