引言
本文是 TalkingData 首席数据科学家张夏天翻译自 Highly Scalable Blog 的一篇文章,介绍了零售业中的数据挖掘问题。
问题 5:促销活动规划
问题定义
零售商向客户提供一组产品时,针对每个用户都制定不同的价格来最大化整体的收入。另外,该问题可以重新定义为提供定向折扣从而在基线价格上改变价格。
零售商准备一次促销活动,即对某个或者一组特定商品进行有时限的折扣。对促销活动的规划需要估计到下列有关的值:
哪些产品的库存需要避免在活动结束前缺货?
什么样的价格会最大化收入?价格可以考虑是一个恒定值或者是一个从活动开始到结束不同时间段的函数。
我们将考虑库存水平是预先确定的,零售商试图计算最优价格这种情况。这是时尚零售商在处理季节性清仓和款式翻新 [JH14, CA12] 中遇到的典型问题。这一问题可以以不同的方式来定义,如将需求预测和价格优化作为独立的问题来处理,也可以同时优化库存水平和价格,总之其目的是最大化收入。
应用
促销活动的规划在零售中有如下的应用:
清仓和季节性促销是时尚零售业中的主要应用。
某些商业模式如快闪零售(也被称为弹出零售)只有促销活动一种销售方式。
快消品和易腐品的零售商可以使用促销活动策划来调整销售节奏与产品保质期同步 。
解决方案
动态需求预测和价格优化是经济学中所研究的基础问题,被称为收入管理。收入管理的理论在书籍如 [TA05] 中有很好的阐释和系统化的介绍。在服务业中的预定服务,如机票、体育场座位、酒店房间、租车等等场景中可以找到收入管理自动化的最先进和最有效率的例子。要理解这些技术可以如何在零售领域中使用,我们来考察由 RueLaLa(一个时尚零售商)提出来的方法论。
我们假设一个零售商计划对 N 个产品或者产品组(产品组中的产品价格相同,如不同口味的酸奶,或者不同花色的 T 恤)进行打折。设 P 为价格集合,该集合包含每个产品可以设定的价格。在实践中,P 通常是根据业务规则组成的比较小集合。例如,价格下限可以根据零售商的盈利水平定义为 29.90, 价格调整幅度根据心理价格可以设定为 5 美元,则 P=$29.9,$34.9,$39.9,$44.9,$49.9。
假设促销活动中的所有产品或者产品组都有某些共同点,例如同属于相同的类目“女鞋”或者“平安夜食品”,因此对一个产品的需求潜在的依赖于其他可替代产品的价格。
通过引入变量 S,其等于所有参与促销活动的竞争产品(产品组)的价格之和,而对某一产品估计的期望需求则为数学期望 E,此处 Q 是表示需求量的随机变量,i=1,2,……,N 是产品的索引,而 j =1,2,……,|P| 是单个产品或产品组的价格。既然 Q 与产品价格 S 和都相关,这就隐含地包含了产品价格与可替代产品的评价价格的比值对需求和其弹性都是有影响的。
现在我们可以在假设 S 为固定的并对所有可能的 S 求解这一优化问题 [JH14]:
当产品 i 的价格为 pj 时,二值变量 δi,j∈0,1 为 1,否则为 0。上述优化问题中的目标函数可以自然地表达为促销活动的收入。第一项约束保证每个产品的价格都在 P 之中(原文可能有问题),而第二项约束保证所有产品的价格之和为 S。其他关于库存水平的约束也可以加入到优化问题中来。
以上的优化问题需对需求 E 做估计,这可以用前面章节中做需求预测和价格分群的技术来解决。然而,需要非常注意到缺货(而且是可取的)是促销活动中非常典型的情况,因此对很多产品的需求预测建模所要用到的历史数据都是被截断的。
正如 [JH14] 中所建议的那样,可以通过使用在此前促销期间没有缺货的产品的数据为不同产品类别构建画像来解决此问题,并使用这些画像来调整相应类别的需求曲线。
领取专属 10元无门槛券
私享最新 技术干货