选自DATAQUEST
作者:Josh Devlin
机器之心编译
参与:Panda
pandas 是一个 Python 软件库,可用于数据操作和分析。数据科学博客 Dataquest.io 发布了一篇关于如何优化 pandas 内存占用的教程:仅需进行简单的数据类型转换,就能够将一个棒球比赛数据集的内存占用减少了近 90%,机器之心对本教程进行了编译介绍。
当使用 pandas 操作小规模数据(低于 100 MB)时,性能一般不是问题。而当面对更大规模的数据(100 MB 到数 GB)时,性能问题会让运行时间变得更漫长,而且会因为内存不足导致运行完全失败。
尽管 Spark 这样的工具可以处理大型数据集(100 GB 到数 TB),但要完全利用它们的能力,往往需要更加昂贵的硬件。而且和 pandas 不同,它们缺少丰富的用于高质量数据清理、探索和分析的功能集。对于中等规模的数据,我们最好能更充分地利用 pandas,而不是换成另一种工具。
在这篇文章中,我们将了解 pandas 的内存使用,以及如何只需通过为列选择合适的数据类型就能将 dataframe 的内存占用减少近 90%。
处理棒球比赛日志
我们将处理 130 年之久的美国职业棒球大联盟(MLB)比赛数据,这些数据来自 Retrosheet:http://www.retrosheet.org/gamelogs/index.html。
这些数据原来分成了 127 个不同的 CSV 文件,但我们已经使用 csvkit 合并了这些数据,并在第一行增加了列名称。如果你想下载本文所用的这个数据版本,请访问:https://data.world/dataquest/mlb-game-logs。
让我们首先导入数据,并看看其中的前五行:
下面我们总结了一些重要的列,但如果你想了解所有的列,我们也为整个数据集创建了一个数据词典:https://data.world/dataquest/mlb-game-logs/workspace/data-dictionary。
date - 比赛时间
v_name - 客队名
v_league - 客队联盟
h_name - 主队名
h_league - 主队联盟
v_score - 客队得分
h_score - 主队得分
v_line_score - 客队每局得分排列,例如: 010000(10)00.
h_line_score - 主队每局得分排列,例如: 010000(10)0X.
park_id - 比赛举办的球场名
attendance- 比赛观众
我们可以使用 DataFrame.info() 方法为我们提供关于 dataframe 的高层面信息,包括它的大小、数据类型的信息和内存使用情况。
默认情况下,pandas 会近似 dataframe 的内存用量以节省时间。因为我们也关心准确度,所以我们将 memory_usage 参数设置为 'deep',以便得到准确的数字。
我们可以看到,我们有 171,907 行和 161 列。pandas 会自动为我们检测数据类型,发现其中有 83 列数据是数值,78 列是 object。object 是指有字符串或包含混合数据类型的情况。
为了更好地理解如何减少内存用量,让我们看看 pandas 是如何将数据存储在内存中的。
dataframe 的内部表示
在 pandas 内部,同样数据类型的列会组织成同一个值块(blocks of values)。这里给出了一个示例,说明了 pandas 对我们的 dataframe 的前 12 列的存储方式。
你可以看到这些块并没有保留原有的列名称。这是因为这些块为存储 dataframe 中的实际值进行了优化。pandas 的 BlockManager 类则负责保留行列索引与实际块之间的映射关系。它可以作为一个 API 使用,提供了对底层数据的访问。不管我们何时选择、编辑或删除这些值,dataframe 类和 BlockManager 类的接口都会将我们的请求翻译成函数和方法的调用。
因为每种数据类型都是分开存储的,所以我们将检查不同数据类型的内存使用情况。首先,我们先来看看各个数据类型的平均内存用量。
可以看出,78 个 object 列所使用的内存量最大。我们后面再具体谈这个问题。首先我们看看能否改进数值列的内存用量。
理解子类型(subtype)
正如我们前面简单提到的那样,pandas 内部将数值表示为 NumPy ndarrays,并将它们存储在内存的连续块中。这种存储模式占用的空间更少,而且也让我们可以快速访问这些值。因为 pandas 表示同一类型的每个值时都使用同样的字节数,而 NumPy ndarray 可以存储值的数量,所以 pandas 可以快速准确地返回一个数值列所消耗的字节数。
pandas 中的许多类型都有多个子类型,这些子类型可以使用更少的字节来表示每个值。比如说 float 类型就包含 float16、float32 和 float64 子类型。类型名称中的数字就代表该类型表示值的位(bit)数。比如说,我们刚刚列出的子类型就分别使用了 2、4、8、16 个字节。下面的表格给出了 pandas 中最常用类型的子类型:
一个 int8 类型的值使用 1 个字节的存储空间,可以表示 256(2^8)个二进制数。这意味着我们可以使用这个子类型来表示从 -128 到 127(包括 0)的所有整数值。
我们可以使用 numpy.iinfo 类来验证每个整型数子类型的最大值和最小值。举个例子:
这里我们可以看到 uint(无符号整型)和 int(有符号整型)之间的差异。这两种类型都有一样的存储能力,但其中一个只保存 0 和正数。无符号整型让我们可以更有效地处理只有正数值的列。
使用子类型优化数值列
我们可以使用函数 pd.to_numeric() 来对我们的数值类型进行 downcast(向下转型)操作。我们会使用 DataFrame.select_dtypes 来选择整型列,然后我们会对其数据类型进行优化,并比较内存用量。
我们可以看到内存用量从 7.9 MB 下降到了 1.5 MB,降低了 80% 以上。但这对我们原有 dataframe 的影响并不大,因为其中的整型列非常少。
让我们对其中的浮点型列进行一样的操作。
我们可以看到浮点型列的数据类型从 float64 变成了 float32,让内存用量降低了 50%。
让我们为原始 dataframe 创建一个副本,并用这些优化后的列替换原来的列,然后看看我们现在的整体内存用量。
尽管我们极大地减少了数值列的内存用量,但整体的内存用量仅减少了 7%。我们的大部分收获都将来自对 object 类型的优化。
在我们开始行动之前,先看看 pandas 中字符串的存储方式与数值类型的存储方式的比较。
数值存储与字符串存储的比较
object 类型表示使用 Python 字符串对象的值,部分原因是 NumPy 不支持缺失(missing)字符串类型。因为 Python 是一种高级的解释性语言,它对内存中存储的值没有细粒度的控制能力。
这一限制导致字符串的存储方式很碎片化,从而会消耗更多内存,而且访问速度也更慢。object 列中的每个元素实际上都是一个指针,包含了实际值在内存中的位置的「地址」。
下面这幅图给出了以 NumPy 数据类型存储数值数据和使用 Python 内置类型存储字符串数据的方式。
图片来源:https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
在前面的表格中,你可能已经注意到 object 类型的内存使用是可变的。尽管每个指针仅占用 1 字节的内存,但如果每个字符串在 Python 中都是单独存储的,那就会占用实际字符串那么大的空间。我们可以使用 sys.getsizeof() 函数来证明这一点,首先查看单个的字符串,然后查看 pandas series 中的项。
你可以看到,当存储在 pandas series 时,字符串的大小与用 Python 单独存储的字符串的大小是一样的。
使用 Categoricals 优化 object 类型
pandas 在 0.15 版引入了 Categorials。category 类型在底层使用了整型值来表示一个列中的值,而不是使用原始值。pandas 使用一个单独的映射词典将这些整型值映射到原始值。只要当一个列包含有限的值的集合时,这种方法就很有用。当我们将一列转换成 category dtype 时,pandas 就使用最节省空间的 int 子类型来表示该列中的所有不同值。
为了了解为什么我们可以使用这种类型来减少内存用量,让我们看看我们的 object 类型中每种类型的不同值的数量。
上图完整图像详见原文
大概看看就能发现,对于我们整个数据集的 172,000 场比赛,其中不同(unique)值的数量可以说非常少。
为了了解当我们将其转换成 categorical 类型时究竟发生了什么,我们拿出一个 object 列来看看。我们将使用数据集的第二列 day_of_week.
看看上表,可以看到其仅包含 7 个不同的值。我们将使用 .astype() 方法将其转换成 categorical 类型。
如你所见,除了这一列的类型发生了改变之外,数据看起来还是完全一样。让我们看看这背后发生了什么。
你可以看到每个不同值都被分配了一个整型值,而该列现在的基本数据类型是 int8。这一列没有任何缺失值,但就算有,category 子类型也能处理,只需将其设置为 -1 即可。
最后,让我们看看在将这一列转换为 category 类型前后的内存用量对比。
9.8 MB 的内存用量减少到了 0.16 MB,减少了 98%!注意,这个特定列可能代表了我们最好的情况之一——即大约 172,000 项却只有 7 个不同的值。
尽管将所有列都转换成这种类型听起来很吸引人,但了解其中的取舍也很重要。最大的坏处是无法执行数值计算。如果没有首先将其转换成数值 dtype,那么我们就无法对 category 列进行算术运算,也就是说无法使用 Series.min() 和 Series.max() 等方法。
我们应该坚持主要将 category 类型用于不同值的数量少于值的总数量的 50% 的 object 列。如果一列中的所有值都是不同的,那么 category 类型所使用的内存将会更多。因为这一列不仅要存储所有的原始字符串值,还要额外存储它们的整型值代码。你可以在 pandas 文档中了解 category 类型的局限性:http://pandas.pydata.org/pandas-docs/stable/categorical.html。
我们将编写一个循环函数来迭代式地检查每一 object 列中不同值的数量是否少于 50%;如果是,就将其转换成 category 类型。
和之前一样进行比较:
在这个案例中,所有的 object 列都被转换成了 category 类型,但并非所有数据集都是如此,所以你应该使用上面的流程进行检查。
object 列的内存用量从 752MB 减少到了 52MB,减少了 93%。让我们将其与我们 dataframe 的其它部分结合起来,看看从最初 861MB 的基础上实现了多少进步。
Wow,进展真是不错!我们还可以执行另一项优化——如果你记得前面给出的数据类型表,你知道还有一个 datetime 类型。这个数据集的第一列就可以使用这个类型。
你可能记得这一列开始是一个整型,现在已经优化成了 unint32 类型。因此,将其转换成 datetime 类型实际上会让内存用量翻倍,因为 datetime 类型是 64 位的。将其转换成 datetime 类型是有价值的,因为这让我们可以更好地进行时间序列分析。
pandas.to_datetime() 函数可以帮我们完成这种转换,使用其 format 参数将我们的日期数据存储成 YYYY-MM-DD 形式。
在读入数据的同时选择类型
现在,我们已经探索了减少现有 dataframe 的内存占用的方法。通过首先读入 dataframe,然后在这个过程中迭代以减少内存占用,我们了解了每种优化方法可以带来的内存减省量。但是正如我们前面提到的一样,我们往往没有足够的内存来表示数据集中的所有值。如果我们一开始甚至无法创建 dataframe,我们又可以怎样应用节省内存的技术呢?
幸运的是,我们可以在读入数据的同时指定最优的列类型。pandas.read_csv() 函数有几个不同的参数让我们可以做到这一点。dtype 参数接受具有(字符串)列名称作为键值(key)以及 NumPy 类型 object 作为值的词典。
首先,我们可将每一列的最终类型存储在一个词典中,其中键值表示列名称,首先移除日期列,因为日期列需要不同的处理方式。
现在我们可以使用这个词典了,另外还有几个参数可用于按正确的类型读入日期,而且仅需几行代码:
上图完整图像详见原文
通过优化这些列,我们成功将 pandas 的内存占用从 861.6MB 减少到了 104.28MB——减少了惊人的 88%!
分析棒球比赛
现在我们已经优化好了我们的数据,我们可以执行一些分析了。让我们先从了解这些比赛的日期分布开始。
我们可以看到在 1920 年代以前,星期日的棒球比赛很少,但在上个世纪后半叶就变得越来越多了。
我们也可以清楚地看到过去 50 年来,比赛的日期分布基本上没什么大变化了。
让我们再看看比赛时长的变化情况:
从 1940 年代以来,棒球比赛的持续时间越来越长。
总结和下一步
我们已经了解了 pandas 使用不同数据类型的方法,然后我们使用这种知识将一个 pandas dataframe 的内存用量减少了近 90%,而且也仅使用了一些简单的技术:
将数值列向下转换成更高效的类型
将字符串列转换成 categorical 类型
如果你还想使用 pandas 处理更大规模的数据,可以参与这个交互式课程:https://www.dataquest.io/m/163/optimizing-dataframe-memory-footprint/16/next-steps。
本文为机器之心编译,转载请联系本公众号获得授权。
✄------------------------------------------------
领取专属 10元无门槛券
私享最新 技术干货