首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

可令 AI 模型计算离散数学,DeepMind 公布 FunSearch 训练法

IT之家 12 月 15 日消息,谷歌 DeepMind 日前公布了一种名为“FunSearch”的模型训练法,号称能够计算包含“上限级问题”、“装箱问题”在内的一系列“涉及数学、计算机科学领域的复杂问题”。

▲ 图源 谷歌 DeepMind(下同)

据悉,FunSearch 模型训练法主要为 AI 模型引入了一个“评估器(Evaluator)”系统,AI 模型输出一系列“创意解题方法”,“评估器”则负责评判模型输出的解题办法,反复迭代后,就能训练出数学能力更强的 AI 模型。

谷歌 DeepMind 使用 PaLM 2 模型进行测试,研究人员建立了专用“代码池”,使用代码形式为模型输入一系列问题,并设置了评估器流程,之后模型便会在每一次迭代中,自动从代码池中挑选问题,生成“具有创造性的新解法”,并交由评估器进行评估,其中“最佳解法”将会被重新加入到代码池中,重新开始另一次迭代。

IT之家注意到,FunSearch 训练法对“离散数学(Combinatorics)”特别擅长,经训练法锻炼后的模型,可以轻松解决极值组合数学问题,研究人员在新闻稿中便介绍了模型计算“上限级问题(数学中涉及计数和排列领域的一个中心问题)”的过程方法。

此外,研究人员也成功使用 FunSearch 训练法解决了“装箱问题(Bin Packing Problem)”,这是一个“将不同大小物品放进最少数量容器”的问题。

FunSearch 为“装箱问题”提供一种即时性的解决方案,生成了一项“根据物品现有体积自动进行调整”的程序,研究人员提到,与其他利用神经网络进行学习的 AI 训练法相比,经过 FunSearch 训练法锻炼后的模型,输出的代码更易于检查与部署,也就代表更容易被整合到实际工业环境中。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/Ojh2FU5Uea58xBl2B1JJ-mhA0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券