1. 欧拉图
本文从哥尼斯堡七桥的故事说起。
哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。
1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每个顶点的度数都是偶数时才会是欧拉图。
欧拉图的几个概念:
欧拉回路:指在图(无向图或有向图)中,经过图中所有边且只经过边一次所形成的回路,称为欧拉回路。具有欧拉回路的图称为欧拉图。如下图结构为欧拉图,从1号节点出发,经过所有边后可以重回到1号节点。
欧拉路径:指通过图中每条边且仅通过一次形成的路径(没有环)。具有欧拉路径但不具有欧拉回路的图称为半欧拉图。如下图,从6号节点出发,可以经过每一条边后到达2号节点,存在欧拉路径,只能说是半欧拉图。
欧拉图的性质:
欧拉图中所有顶点的度数都是偶数。也就是说,图中存在欧拉回路的充要条件是图中每个结点都是偶节点(连接该节点的边的数量为偶数)。
因为欧拉回路定义只能经过每条边一次,所以,对于每一个节点,至少需要有 2n(n=0,1……) 条边连接该节点。
论证:当 n = 0时,图结构中只含有一个节点v,边数为0,图论中认为自己和自己是能构建成回路的。所以当n=0时,图是欧拉图。
当n>=1时,如果从一个节点出发,经过一个路径后,能够重新回来。相当于一个人要和其他人围成一个圈,每个人必须伸出两只手,否则是不可能形成圈的。故每个节点都连接有2n(n = 0,1,2,...n)条边。
欧拉路径中奇节点(连接该节点的边的数量为奇数)的个数为0或2。若奇节点的个数为0,则图中存在欧拉回路,欧拉回路也是欧拉路径的一种。把欧拉回路变成欧拉路径,只需要抽取出环中的一条边。因为欧拉环的充要条件是节点度数有偶数,抽取出一条边后,会让原来连接边两端的节点的度数分别减少一,出现两个奇节点。
除此之外,你不能再抽取出任何一条边,否则得不到欧拉路径。
若图是欧拉图,则它为若干个环的并集,且每条边被包含在奇数个环内。如下图,整个图是由5个环组成,且每一条边都是包含在奇数个环内。
欧拉图的判定法:
无向图是欧拉图当且仅当:非零度顶点是连通的;顶点的度数都是偶数。
无向图是半欧拉图当且仅当:非零度顶点是连通的;恰有 2 个奇度顶点。
有向图是欧拉图当且仅当:非零度顶点是强连通的;每个顶点的入度和出度相等。
有向图是半欧拉图当且仅当:非零度顶点是弱连通的;至多一个顶点的出度与入度之差为 1;至多一个顶点的入度与出度之差为 1;其他顶点的入度和出度相等。
2. 欧拉图判定算法
2.1 Fleury(弗罗莱) 算法
Fleury算法用来判断图是否是欧拉通路或欧拉回路的算法。
使用如下的欧拉图,了解Fleury算法的主要步骤。
Tips: 根据欧拉图的判断法,下图中每一个节点都是偶节点,满足无向图是欧拉图的前提条件。
选节点1为起点,并将该起点加入路径中。Fleury算法选择栈存储欧拉路径。
从起点开始,一路DFS试着走出一条通路。方法是找与此节点相邻的节点。
如果只有一个节点,则将这个点直接加入路径中。
如果有多个相邻节点,则选择其中一条边,把相邻节点加入路径后,且删除这一条边。
如果没有邻接节点,则从路径中弹出。
节点5和节点2都与1相邻,可以选择向5方向,也可以选择2方向。这里选择2方向,把节点2放入路径,然后置1-2这条边为删除状态。如此这般,一路经过3、4、5节点后回到1号节点。下图中标记为红色的边表示已经访问或被删除。
重新回到节点1,此时不再存在与节点1邻接的节点,从路径中弹也,依次可弹出5、4、3。直到碰到2号节点。
因为存在与2号节点邻接的节点,再次以2号节点为始点,使用DFS开路。一路上遇到6、7,且再次回到2号节点。
2号节点不存在与之邻接的节点,出栈。同理,7、6依次出栈。
小结:
当有与当前节点邻接的节点时,一路DFS,直到没有邻接的尽头。些时,一轮DFS算法结束,从路径中依次弹出没有邻接节点的节点,直到遇到还有邻接节点的节点,新一轮的DFS重新开始。直到所有节点邻接的边全部访问完毕。
编码实现:
#include
#include
#include
#include
#include
#define INF 100000
using namespace std;
int graph[100][100];
int n,m;
stack sta;
void read() {
for(int i = 0; i
int f,t;
cin >> f >> t;
graph[f][t] = 1;
graph[t][f] = 1;
}
}
void dfs(int u) {
sta.push(u);
for(int i = 1; i
if(graph[i][u] > 0) {
//标记为删除
graph[u][i] = 0;
graph[i][u] = 0;
dfs(i);
//仅朝一条边方向 DFS,方便形成回路
break;
}
}
}
void fleury(int x) {
int isEdge;
sta.push(x);
while(!sta.empty()) {
isEdge = 0;
int t = sta.top();
sta.pop();
//检查是否有边
for(int i = 1; i
if(graph[t][i] > 0) {
isEdge = 1;
break;
}
}
if(isEdge == 0) {
//没有邻接边,输出
cout
} else {
//有邻接边,一路DFS狂奔
dfs(t);
}
}
}
int main() {
cin >> n >> m;
memset(graph,0,sizeof(graph));
read();
int num = 0;
int start = 1;
for(int i = 1; i
int deg = 0;
for(int j = 1; j
deg += graph[i][j];
if(deg % 2 == 1) {
//奇节点的数量
start = i;
num++;
}
}
if(num == 0 || num == 2)
fleury(start);
else
cout
return 0;
}
//测试用例
7 8
1 2
1 5
2 3
2 6
2 7
3 4
4 5
6 7
测试结果:
2.2 Hierholzer 算法
也称逐步插入回路法。由数学家卡尔·希尔霍尔策给出,基于贪心思想。Hierholzer 的基本思路。先找到一个子回路,以此子回路为基础,逐步将其它回路以插入的方式合并到该子回路中,最终形成完整的欧拉回路。继续使用上图做演示。
寻找子回路:如下从节点1开始,沿着边遍历图,一边遍历一边删除经过的边。如果遇到一个所有边都被删除的节点,那么该节点必然是 1(回到初始点)。将该回路上的节点和边添加到结果序列中。这个过程和Fleury算法没有太多区别。
回溯时检查刚添加到结果序列中的节点,看是否还有与节点相连且未遍历的边。可发现节点 2 有未遍历的边,则从 2 出发开始遍历,找到一个包含 2 的新回路,将结果序列中的一个 2 用这个新回路替换,此时结果序列仍然是一个回路。这是和Fleury算法最大区别。
重复直到所有边都被遍历。
编码实现
#include
#include
#include
const int maxn = 10005;
const int maxm = 1000005;//edge
using namespace std;
int n,m;
struct Edge {
int to, nxt;
bool vis=0;
};
Edge edge[maxm];
//如果没有以 i 为起点的有向边则 head[i] 的值为 0
int head[maxm];
//边的个数
int cnt;
//存储找到的回路
vector ans;
//起始点
int sn;
void init() {
for(int i=1; i
head[i]=0;
cnt=0;
}
}
/*
*添加边
*/
void addEdge(int from, int to) {
edge[cnt].to = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void read() {
int f,t;
for(int i=1; i
cin>>f>>t;
addEdge(f,t);
addEdge(t,f);
}
}
void hierholzer(int sn) {
for (int i = head[sn]; i != 0; i = edge[i].nxt) {
// 遍历过
if (edge[i].vis) continue;
// 删除
edge[i].vis = edge[i ^ 1].vis = true;
// 继续
hierholzer(edge[i].to);
// 回溯时加入结果序列后,循环会继续查找是否有邻接边
ans.push_back(edge[i]);
}
}
void show() {
for(int i=0; i
cout
}
cout
}
int main() {
cin>>n>>m;
sn=1;
init();
read();
hierholzer(sn);
show();
return 0;
}
测试结果:
3. 总结
Hierholzer和Fleury算法的基本思路差不多,在DFS时找环。Fleury使用分段策略,找到一条环后,以环中某一个还存在邻接边的节点重新开始使用DFS找环,直到找到所有环。Hierholzer算法很有技巧性,在回溯时检查节点是否还有邻接边,有则重新DFS直到完毕。
领取专属 10元无门槛券
私享最新 技术干货