首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

微软推出 XOT 方法,提升语言模型推理能力

IT之家 11 月 15 日消息,微软近日推出了名为“Everything of Thought”(XOT)的方法,灵感来自谷歌 DeepMind 的 AlphaZero,利用紧凑的神经网络,来增强 AI 模型推理能力。

微软和佐治亚理工学院、华东师范大学合作开发了该算法,整合了强化学习(reinforcement learning)和蒙特卡洛树搜索 (MCTS) 能力,在复杂决策环境中,进一步提高解决问题的有效性。

IT之家注:微软研究团队表示 XOT 方法可以让语言模型扩展到不熟悉的问题上,在 Game of 24、8-Puzzle 和 Pocket Cube 严苛测试中提升明显。结果表明,XOT 明显优于其他方法,甚至解决了其他方法失败的问题。但是,XOT 并没有达到 100% 的可靠性。

XOT 框架包括以下关键步骤:

预训练阶段:MCTS 模块在特定任务上进行预训练,以学习有关有效思维搜索的领域知识。轻量级策略和价值网络指导搜索。思想搜索: 在推理过程中,预训练的 MCTS 模块使用策略 / 价值网络来有效地探索和生成 LLM 的思想轨迹。

思想修正:LLM 审查 MCTS 的思想并识别任何错误。修正的想法是通过额外的 MCTS 模拟产生的。

LLM 推理: 将修改后的想法提供给 LLM 解决问题的最终提示。

IT之家在此附上论文 [PDF] 地址,感兴趣的用户可以深入阅读。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OPHlQb6v1mYD255ozgV5GKUA0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券