几年前,《超能陆战队》热播的时候,暖男机器人大白俘获了许多迷妹的芳心,人人都想要个大白。而现在,这种 AI 医生可能不再是荧幕上的角色,而是真真正正地出现在了现实中。
最近,我们认识了一个研究互联网 + 医疗健康行业布局的健康管理人员,她给我们整理了她这些年了解到的一些应用在医疗上的人工智能,现在,我们就一起去看看吧!
影像科皮肤科首当其冲
人工智能发展至今,已涉足医学影像、基因检测、临床手术、辅助决策等多个医疗领域。其中,医学影像属于介入较早且卓有成效的板块之一。
轻松识别糖尿病早期视网膜病变的 AI
2016 年,Google DeepMind Health 团队给自家 AI 喂养了 12.8 万副视网膜眼底图像,打造出一只可以轻松识别糖尿病早期视网膜病变的 AI。
这项技术,让那些可能将在 3 年、5 年甚至 10 年后失明的糖尿病患者,获得了宝贵的提前治疗机会。
在验证实验中,研究组请来了 8 位眼科专家,与 AI 一同识别 9,963 张眼底图像。结果,AI 以高达 97.5% 的灵敏度和 93.4% 的特异性惊艳四座,诊断能力堪比专业医师(后者为 96.1% 的灵敏度和 93.9% 的特异性)。
图片来源:Google research Blog
皮肤病智能诊断 AI
视网膜病变检测,仅仅是 AI 介入医疗诊断的冰山一角。2014 年至今,经过深度学习的 AI 们,已先后在皮肤癌、乳腺癌、先天性白内障、心脏病、脑部肿瘤等病灶识别技术上有所建树。
今年 5 月,丁香园、中南大学湘雅二医院、大拿科技共同宣布就皮肤病人工智能辅助诊断达成独家战略合作,并发布和展示了由三方联合开发的「皮肤病人工智能辅助诊断系统」。
经过数月的科技攻关,目前已研发出了较成熟的红斑狼疮人工智能辅助诊断模型。该模型对红斑狼疮各种亚型以及其鉴别诊断疾病能进行有效地区分,其识别准确率超过 85%。
AI 皮肤癌检测
图源: Stanford university 官网
识别甲状腺 B 超的 AI
在今年,知名电商大佬就发布展示用于甲状腺结节病灶识别的 AI。
经过训练后,它可以在十几秒内处理完一张甲状腺 B 超,借助计算机视觉技术,这套算法可以对甲状腺B超快速扫描分析,圈出结节区域,并给出良性与恶性的判断,大大节省了医生的诊断时间。
一般来说,人类医生的准确率为 60%~70%,而当下算法的准确率已经达到 85%。可以说是相当于给医院配了一个 24 小时不休息的「实习医生」。
辅助诊断不甘其后
在医疗人工智能刚开始的时候,做影像学和皮肤学相关的人很多,但慢慢地,更多的人开始把目光转移到辅助诊断上。
肿瘤领域的专家 AI
在肿瘤方面,做得最出色的当属 IBM 旗下的 Waston 肿瘤医生。这位在 2012 年就通过美国执业医师考试的 AI 老前辈,可以在 17 秒内阅读 3,469 本医学专著、248,000 篇论文、69 种治疗方案、106,000 份临床报告。
Waston 能够提供包括乳腺癌、肺癌、结肠癌、前列腺癌、膀胱癌、子宫癌等疾病的诊断和治疗方案,匹配度达 90%,是目前最成熟的辅助诊疗系统之一。
2016 年,随着浙江省中医院沃森联合会诊中心成立,Waston 肿瘤医生正式落户中国。目前,这位兢兢业业的医生正活跃在多家医院的一线岗位上呢。
手机里的 AI 医生
Triage 是手机里的「家庭医生」,如它的名字一般,行使着「连接医患,帮助医生进行患者分类」的职责。
具体来说,就是经过深度学习后,它可以在面诊前通过与患者对话、问诊等获取患者信息,从而实现分诊。
不仅如此,Triage 还能协助完成治疗方案分析,同时为患者提供常见病的处理建议。可以说是现实版的「大白」了。
智能穿戴方便生活
提到智能穿戴,就不得不提到 Google,他们在智能医疗行业深耕多年,不仅成立专注于 AI 研究的团队 DeepMind Health、Google Fit 和 Verily,还曾发布「随着血液流动的纳米机器人」这种几近科幻的产品,脑洞之大,着实为行业带来不少灵感。
在智能穿戴上,主要有 Google Glass、检测人体癌细胞微粒的医用测癌腕套、可监测血糖的智能隐形眼镜以及为帕金森患者研发的智能平衡勺子 Liftware Level 等,都为医疗带来了极大的便利。
Google 的智能隐性眼镜和 Liftware Level 勺子
除了 Google,Microsoft 也有自己引以为豪的智能穿戴。他们的 Seeing AI 制作了一款供视力障碍人群使用的智能眼镜。这款眼镜可以自动识别眼前的人和物,通过语音描述给佩戴者,结合相应的 APP,甚至可以读出文本。
它的出现,让这个世界对盲人来说不再遥不可及。
Seeing AI 团队盲人工程师
Saqib Shaikh 佩戴自己研发的产品
深度学习,离不开大数据
一只性能稳定,预测精准的乖巧 AI,身后必有完善且高质量的数据支持。
近期,来自哈佛医学院的 Kenneth D.Mandl 教授就在知名大刊 JAMA 上发文,对辅助医疗决策的数据系统构建提出大胆设想:
想要达到辅助诊疗的目的,依靠现有的电子健康档案是远远不够的,为此,我们需要构建一个临床信息共享(Clinical Information Commons,CIC)系统。
这个系统可以实现个体健康档案、生物样本、基因序列、医疗保健、行为方式甚至生活环境等数据的高度整合。
用于辅助诊断的 CIC 系统
图片来源:JAMA 官网
患者与系统方签署协议后开始共享个人数据,在今后的若干年内,数据将保持动态更新。
对于医生和科研人员来说,这些数据既可用于诊断决策,又可用于医学研究,为嗷嗷待哺的 AI 们提供高质量的「营养餐」,自不在话下。
而对于患者来说,一方面,他们是数据的贡献者,另一方面,他们也是 AI 深度学习完善后的最大受益者。
总之,目前国内的医疗人工智能产业总体起步较晚,产品也相对单一。但国民不断增长的医疗健康需求为 AI 催生了广阔的发展空间,相信在不久的将来,国产人工智能会带给我们更多惊喜。
作者:萨清,杭州师范大学健康管理硕士,参与课题「互联网+医疗健康行业布局研究」,发表 SCI 论文四篇。
参考文献:
1.Babylon Health partners with UK’s NHS to replace telephone helpline with AI-powered chatbot. techcrunch.com
2. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. Jama, 2016, 316(22):2402.
3. Mandl K D, Bourgeois F T. The Evolution of Patient Diagnosis: From Art to Digital Data-Driven Science.[J]. Jama the Journal of the American Medical Association, 2017.
4.How watson for oncology is advancing personalized patient care. ascopost.com.
5. Yiou intelligence 2017 人工智能赋能医疗产业研究报告.
领取专属 10元无门槛券
私享最新 技术干货