首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

JStorm kafka集成解析

前言

上一篇从架构设计、计算模型上对jstorm做了系统化表述,读后会对应用场景、功能实现上有清晰明确的认识,建议没有看过的朋友看一看。这篇文章主要聊聊集成kafka的实现细节、开发时要注意的一些坑及优化方面的一些思考

实时流式计算框架一般从消息队列实时拉取数据,而kafka是很多公司首选的分布式消息发布订阅系统,jstorm也提供了消费kafka的spout,便于构建基于kafka的实时应用程序。关于kafka的更多介绍可参见

0x01 partition分配

kafka的一个topic会有一到多个partition,而spout task也可能有多个,所以在创建KafkaSpout task时,就给每个task分配好了待消费的partition列表,分配算法如下:

也就是说每个task在运行期间消费的partition是固定的,这样如果topology提交后,topic又新增了分区,会导致消费不到新增的partition

0x02 业务逻辑

jstorm计算框架的ack机制保证了消息可靠性(消息不丢失):ack确认消息处理完毕,spout不用重复发送该消息;fail表示下游消息处理失败,spout要再次发送该消息以保证每条消息都会被成功处理。

结合jstorm框架和KafkaConsumer,内部主要涉及到ack/fail/emit、从kafka poll消息和commit postition这几个操作,其中poll消息、emit和commit position是在KafkaSpout.nextTuple方法内顺序执行的。涉及到的主要数据结构:

LinkedList emittingMessages :存储consumer从topic拉取的消息

SortedSet pendingOffsets:以有序方式存放从topic拉取到的消息offset

SortedSet failedOffsets:fail事件的消息offset

long emittingOffset:当前从topic拉取的消息offset

long lastCommittedOffset:最后一次持久化存储的offset

其时序图如下:

0x03 nextTuple、ack解析

如前所述,nextTuple方法会从kafka里拉取消息并把消息的offset add到pendingOffsets,而ack时从pendingOffsets里remove元素,ack和nextTuple可能并发执行,这样在并发场景下,因SortedSet是非线程安全的,就会出现异常:

解决这个bug的方案:

1、声明pendingOffsets为线程安全的SortedSet对象,比如ConcurrentSkipListSet

2、在对pendingOffsets的add、remove操作上加同步机制锁

0x04 commit offset解析

KafkaSpout是定时的(不是单独线程而是在nextTuple方法内)commit offset:从pendingOffsets有序列表里返回第一个(最小的offset)元素,然后判断和上次提交的offset(lastCommittedOffset)是否相同,如果不相同就把该offset存到ZK,否则不予处理。

如果下游处理失败,即fail而没有ack,就会产生一个问题,每次从pendingOffsets返回第一个元素时,都是这条fail消息的offset,导致offset不会commit,但实际上KafkaSpout还在继续消费kafka。而且KafkaSpout的fail函数只是把失败消息的offset从failedOffsets列表里remove掉,没有做进一步处理,这是一个隐形的bug。理论上对失败的消息是要重新发送的,才能保证最终处理结果是exactly once,如果emit失败的消息,要注意流式的顺序性。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180227G076TD00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券