首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

通过几段代码,详解Python单线程、多线程、多进程

前言

在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。

一、进程和线程

进程可以理解为是正在运行的程序的实例。进程是拥有资源的独立单位,而线程不是独立的单位。由于每一次调度进程的开销比较大,为此才引入的线程。一个进程可以拥有多个线程,一个进程中可以同时存在多个线程,这些线程共享该进程的资源,线程的切换消耗是很小的。因此在操作系统中引入进程的目的是更好地使多道程序并发执行,提高资源利用率和系统吞吐量;而引入线程的目的则是减小程序在并发执行时所付出的时空开销,提高操作系统的并发性能。

下面用简单的例子进行描述,打开本地计算机的”任务管理器”如图1所示,这些正在运行的程序叫作进程。如果将一个进程比喻成一个工作,指定10个人来做这份工作,这10个人就是10个线程。因此,在一定的范围内,多线程效率比单线程效率更高。

图1.任务管理器

二、Python中的多线程与单线程

在我们平时学习的过程中,使用的主要是单线程爬虫。一般来说,如果爬取的资源不是特别大,使用单线程即可。在Python中,默认情况下是单线程的,简单理解为:代码是按顺序依次运行的,比如先运行第一行代码,再运行第二行,依次类推。在前面章节所学习知识中,都是以单线程的形式实践的。

举个例子,批量下载某网站的图片,由于下载图片是一个耗时的操作,如果依然采用单线程的方式下载,那么效率就会特别低,意味着需要消耗更多的时间等待下载。为了节约时间,这时候我们就可以考虑使用多线程的方式来下载图片。

 threading模块是Python中专门用来做多线程编程的模块,它对thread进行了封装,使用更加方便。例如需要对写代码和玩游戏两个事件使用多线程进行,案例代码如下。

运行结果如图2所示。

图2.多线程运行结果

那么执行单线程会消耗多少时间,案例代码如下所示。

运行结果如图3所示。

图3.单线程运行结果

经过以上多线程和单线程的运行结果,可以看出多线程中写代码和玩游戏是一起执行的,单线程中则是先写代码再玩游戏。从时间上来说,可能只有细微的差距,当执行工作量很大的时候,便会发现多线程消耗的时间会更少,从这个案例中我们也可以知道,当所需要执行的任务并不多的时候,只需要编写单线程即可。

三、单线程改为多线程

以某直播的图片爬取为例,案例代码如下。

如果需要修改为多线程爬虫,只需要修改主函数即可,例如创建4个线程进行爬取,案例代码如下所示。

本书介绍了Python3网络爬虫的常见技术。首先介绍了网页的基础知识,然后介绍了urllib、Requests请求库以及XPath、Beautiful Soup等解析库,接着介绍了selenium对动态网站的爬取和Scrapy爬虫框架,最后介绍了Linux基础,便于读者自主部署编写好的爬虫脚本。

本书主要面向对网络爬虫感兴趣的初学者。

作者介绍

内容结构及配套资源

撰  稿  人:计旭

责任编辑:张淑谦

审  核  人:时静

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OxmhMuw2CTqQ2LT3iUGFwb4A0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券