首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

微软亚洲研究院提出全新大模型基础架构:推理速度 8 倍提升,内存占用减少 70%

据量子位报道,来自微软亚洲研究院(MSRA)的学者在“Retentive Network: A Successor to Transformer for Large Language Models”论文中提出新的大模型架构 Retentive Network(RetNet),这被视作大模型领域 Transformer 的继任者。实验数据显示,在语言建模任务上:RetNet 可以达到与 Transformer 相当的困惑度(perplexity),推理速度达 8.4 倍,内存占用减少 70%,具有良好的扩展性。并且当模型大小大于一定规模时,RetNet 表现会优于 Transformer。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/ODDvFa9DMO3DPvdlWgNicDcg0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券