首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

本地推理,单机运行,MacM1芯片系统基于大语言模型 LLaMA部署“本地版”的ChatGPT

OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推。

在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要占用4字节或8字节的存储空间。因此,对于包含70亿个参数的神经网络,其存储空间将分别为8 GB或12GB。

此外,神经网络的大小不仅取决于参数的数量,还取决于神经元的数目,层数和其他结构参数等。因此,70亿的神经网络可能会占用更多的存储空间,具体取决于网络的结构和实现细节。

因此这种体量的模型单机跑绝对够我们喝一壶,所以本次使用最小的LLaMA 7B模型进行测试。

LLaMA项目安装和模型配置

和Stable-Diffusion项目如出一辙,FaceBook开源的LLaMA项目默认写死使用cuda模式,这也就意味着必须有 NVIDIA 的 GPU来训练和运行,不过好在大神GeorgiGerganov 用 C++ 基于 LLaMA 项目重写了一个跑在 CPU 上的移植版本 llama.cpp应用。

llama.cpp首先适配的就是苹果的M系列芯片,这对于果粉来说无疑是一个重大利好,首先通过命令拉取C++版本的LLaMA项目:

随后进入项目目录:

在项目中,需要单独建立一个模型文件夹models:

随后去huggingface官网下载LLaMA的7B模型文件:https://huggingface.co/nyanko7/LLaMA-7B/tree/main

是的,主模型文件已经达到了13.5gb之巨,如果本地硬盘空间告急,请谨慎下载。

随后在models目录建立模型子目录7B:

将tokenizer.model和tokenizer_checklist.chk放入和7B平行的目录中:

至此,模型就配置好了。

LLaMA模型转换

由于我们没有使用FaceBook的原版项目,所以它的模型还需要进行转换,也就是转换为当前C++版本的LLaMA可以运行的模型。

这里通过Python脚本进行转换操作:

第一个参数是模型所在目录,第二个参数为转换时使用的浮点类型,使用 float32,转换的结果文件会大一倍,当该参数值为 1时,则使用 float16 这个默认值,这里我们使用默认数据类型。

程序输出:

可以看到,如果转换成功,会在models/7B/目录生成一个C++可以调用的ggml-model-f16.bin模型文件。

LLaMA模型调用

接下来就可以调用转换后的模型了,首先在编译C++项目:

程序返回:

编译成功后,本地会生成一个main.cpp文件。

随后根据编译后输出的说明文档直接调用模型即可:

程序输出:

说实话,推理速度实在不敢恭维,也可能是因为笔者的电脑配置太渣导致。

结语

LLaMA 7B模型总体上需要纯英文的提示词(prompt),对中文的理解能力还不够,优势是确实可以单机跑起来,当然本地跑的话,减少了网络传输数据的环节,推理效率自然也就更高,对于普通的AI爱好者来说,足矣。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20230324A00W1A00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券