人工智能在新一代智能制造中的应用
信息技术的爆发式发展促进了人工智能技术在实际应用上的突破,具备了“学习”能力,拥有了认识、产生、运用知识的能力,呈现出自主学习、人机协同、群体智能等新特征。
人工智能技术已成为抢占未来科技高地的核心,成为推动人类科技发展的强劲动力,通过与先进制造技术的集成、发展,在制造过程系统、装备、工艺、服务等多个层面都有了具体和广泛的应用。
1 系统流程层面
制造企业近些年通过构建ERP、BPM、SRM等系统,在业务流程、运营管理层面已经相对完善,基本打通了市场、制造、运营、财务、供应、服务等环节,但相对来说是比较刚性的打通和联接,各指令的生成相对规则化,缺少预测性和前瞻性,即缺少基于数据和模型的预测,随着人工智能技术的应用,可以实现如下几方面的改进和提升:
1)市场和销售情况
基于数据和模型,可以更准确的摸索市场规律、预测市场趋势,对细分市场的规模、个性化需求、竞争对手情况等多因素进行预判,辅助市场决策。
2)财务和预算情况
建立财务成本模型、预算模型、财务-生产-库存-市场等综合模型,对财务相关业务进行综合分析、合理预测,确保财务风险可控,财务利益最大化。
3)供应和库存情况
结合市场、生产、大宗商品价格、利率汇率等情况,建立采购供应和库存等相关模型,在保障生产的情况下,最大程度减少库存、降低采购成本、降低仓储物流成本,使资金效率最大化。
2 装备层面
人工智能技术赋能装备,使装备智能化,简单来说是使装备具备自感知、自决策、自执行、自适应、自学习等能力,赋予装备生命,使装备作为智能个体融入智能制造体系,装备层面一般的人工智能技术和场景如下:
1)机器视觉的应用
机器视觉在智能制造装备上的应用已相对成熟,包括自动识别定位、自动作业、缺陷检测、自动导航、自动巡检等场景的应用,未来会随着相关算法的迭代应用更深入、更成熟。
2)边缘计算与专家知识的应用
智能装备的自感知、自控制和自学习能力,一般体现在指令和控制的柔性、参数的自动修正和补偿,如机加工设备、炉、罐、反应釜等装备,这一般需要边缘测(设备测)的计算能力和专家知识的应用,人工智能技术结合感知数据、基础模型、专家知识和边缘计算,形成边缘测的动态柔性控制。
3)装备故障预测及诊断
大型装备(机组)的健康管理也是人工智能应用的重点,通过设备机理、故障机理、故障特征以及专家知识的应用,建立故障预测及诊断模型,结合实时数据、机器学习、深度学习,预测判断关键零部件及机组故障情况、使用寿命情况,为针对性运维、前瞻性运维提供数据支撑。
3 工艺层面
制造企业工艺过程的优化和改进是不断迭代的长期命题,在缺少大数据和人工智能支撑的情况下,工艺改进往往具有盲目性和试错性,应用人工智能技术,在参数的关联性、数据的趋势性等方面的分析将有显著提升,是分析、改进工艺的有效手段。
1)物理特性工艺分析
针对传统的锻造、铸造、热处理、反应釜、高温炉等装置,可建立工艺参数、设备参数、产品性能等综合模型,实现基于数据的工艺分析及优化。
2)化学特性工艺分析
针对化工、生物等流程型制造,可建立物性数据、工艺参数、设备参数、产品性能等综合模型,应用大数据及人工智能分析寻优,改进工艺。
4 服务层面
制造企业的服务,一般指产品的售后服务,结合产品特性及服务需求,人工智能对服务业务的赋能一般体现在如下几点:
1)基于用户画像的个性化服务
在大数据技术爆发式发展的背景下,通过前期产品特性、客户使用需求与后期客户服务需求相结合,分析建立用户画像,为实现个性化、高效、精准服务提供支撑,提高制造企业质量。
2)大型机组的远程运维
大型装备的远程运维也是人工智能对服务提升的重点,结合工业互联网,实现对设备的远程实时监控、在线体检,掌握设备状态,分析、输出运维依据,确保设备“长稳优”运行。
新一代智能制造发展趋势
新一代智能制造是人工智能与先进制造技术深度融合的制造模式,人工智能技术的爆发式发展以及材料、工艺的进步,智能制造技术和模式也必将不断螺旋进化、迭代发展,从要素智能向整体智能、生态智能演化,最终形成智能制造各要素点、线、面、体全方位多维度的智能制造生态。
以上仅是对新一代智能制造技术的几点思索,智能制造是一个不断发展的过程,人工智能技术与产业更是在大踏步发展,目前只是对有限应用场景的几点粗浅认识,未来随着技术的发展和理念模式的演进,应用人工智能技术的智能制造也必将从场景发展到全景,在推动第四次工业革命发展的同时,深刻改变、重构世界。
领取专属 10元无门槛券
私享最新 技术干货