首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

x86 jmp注册

x86 jmp 注册是计算机编程中的一种术语,表示在计算机程序中使用 x86 指令集进行跳转。x86 指令集是一种由 Intel 和 AMD 开发的指令集,广泛应用于个人计算机、服务器、嵌入式系统等领域。在编程中,使用 jmp 指令可以实现程序流程的跳转,以便在不同的代码段之间进行切换。注册是指向某个域名或 IP 地址的指针,以便将浏览器重定向到相应的网页。在 x86 jmp 注册中,通常使用 jmp 指令来跳转到特定的注册页面,以便用户可以注册成为某个服务的用户。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 逆向工程——栈[三]

    栈是计算机科学里最重要的且最基础的数据结构之一。 从技术上讲,栈就是CPU寄存器里面的某个指针所指向的一片内存区域。这里所说的某个指针通常位于x86/x64平台的ESP寄存器/RSP寄存器,以及ARM平台的SP寄存器。 操作栈最常见的指令是PUSH和POP,在 x86 和 ARM Thumb 模式的指令集里都有这两条指令。 PUSH指令会对ESP/RSP/SP寄存器的值进行减法运算,使之减去4(32位)或8(64位),然后将操作数写到上述寄存器里的指针所指向的内存中。 POP指令是PUSH的逆操作:他先从栈指针(Stack Pionter,上面三个寄存器之一)指向的内存中读取数据,用以备用(通常是写到其他寄存器里面),然后再将栈指针的数值加上4或8. 在分配栈的空间之后,栈指针,即Stack Pointer所指向的地址是栈的底部。PUSH将减少栈指针的数值,而POP会增加它的数值。栈的“底”实际上使用的是整个栈的最低地址,即是整个栈的启始内存地址。 ARM的栈分为递增栈和递减栈。递减栈(descending stack)的首地址是栈的最高地址,栈向低地址增长,栈指针的值随栈的增长而减少,如STMFA/LMDFA、STMFD/LDMFD、STMED、LDMEA等指令,都是递增栈的操作指令。

    03

    使用jprobe建设镜面层叠的原则和见解

    忽然想起的回忆,那是2007上周五在冬季,我看我的老湿调试Linux堆IP层,只看到他改变路由查找的逻辑,然后直接make install上的立竿见影的效果有点,我只知道,,这种逻辑必须再次更改编译内核。再一次,他没有编译,就像刚才编译的文件…时又无聊的工作阻碍了我对Linux内核的探索进度,直到今天,我依旧对编译内核有相当的恐惧,不怕出错,而是怕磁盘空间不够,initrd的组装拆解之类,太繁琐了。我之所以知道2007年的那天是周五,是由于第二天我要加班。没有谁逼我。我自愿的,由于我想知道师父是怎么做到不又一次编译内核就能改变非模块的内核代码处理逻辑的。第二天的收获非常多,不但知道了他使用了“镜像协议栈”。还额外赚了一天的加班费。我还记得周六加完班我和老婆去吃了一家叫做石工坊的羊排火锅。人家赠送了一仅仅绿色的兔子玩偶。

    02

    SEH分析笔记(X64篇)

    SEH分析笔记(X64篇) v1.0.0 boxcounter 历史: v1.0.0, 2011-11-4:最初版本。 [不介意转载,但请注明出处 www.boxcounter.com 附件里有本文的原始稿,一样的内容,更好的高亮和排版。 本文的部分代码可能会因为论坛的自动换行变得很乱,需要的朋友手动复制到自己的代码编辑器就可以正常显示了] 在之前的《SEH分析笔记(X86篇)》中,我借助 wrk1.2 介绍了 x86 下 windows 系统内核中的 SEH 实现。这次我们来看看 x64 位 windows 系统内核中 SEH 的实现。 本文需要大家熟悉 x64 位系统的一些特性,比如调用约定、Prolog 和 Epilog。可以通过这几篇文章熟悉一下: Overview of x64 Calling Conventions, MSDN The history of calling conventions, part 5: amd64 , The Old New Thing Everything You Need To Know To Start Programming 64-Bit Windows Systems, Matt Pietrek 首先回顾一下前一篇文章。 在 x86 windows 中,函数通过以下几个步骤来参与 SEH : 1. 在自身的栈空间中分配并初始化一个 EXCEPTION_REGISTRATION(_RECORD) 结构体。 2. 将该 EXCEPTION_REGISTRATION(_RECORD) 挂入当前线程的异常链表。 当某函数触发异常时,系统首先会通过调用 KiDispatchException 来给内核调试器一个机会,如果内核调试器没有处理该异常,则该机会被转给 RtlDispatchException,这个函数就开始分发该异常。分发过程为: 从当前线程的异常链表头开始遍历,对于每一个 SEH 注册信息(即 EXCEPTION_REGISTRATION(_RECORD)),调用其 Handler。根据 Handler 的返回值做相应的后续处理: 1. 返回 ExceptionContinueExecution,表示 Handler 已经修复了异常触发点,从异常触发点继续执行。 2. 返回 ExceptionContinueSearch,表示该 Handler 没有处理该异常,继续遍历异常链表。 3. Handler 没有修复异常触发点,但是却能处理该异常(某个 __except 过滤代码返回 EXCEPTION_EXECUTE_HANDLER)。这种情况下,处理完该异常后就从异常解决代码(__except 代码块)继续执行,Handler 不会返回。 以上是简略的 x86 SEH 流程,其中省略了很多细节,比如展开、错误处理、ExceptionNestedException 和 ExceptionCollidedUnwind 等等。 之所以在这里重温这个流程,是因为 x64 中 SEH 的流程总体思路也是如此,只是细节上做了一些修改。但这并不表示熟悉 x86 SEH 就能很轻松的掌握 x64 SEH。 本文分为四个部分:“异常注册”、“异常分发”、“展开、解决”和“ExceptionNestedException 和 ExceptionCollidedUnwind”。依然以 MSC 的增强版为分析对象。分析环境为:WDK 7600.16385.1,内置的 cl 的版本是15.00.30729.207,link 的版本是9.00.30729.207,测试虚拟机系统为 amd64 WinXP + wrk1.2。 在讲述之前,需要先定义几个名词,以简化后续的讲述。 RVA —— 熟悉 PE 格式的朋友都懂的,表示某个绝对地址相对于所在模块的基地址的偏移。 EXCEPT_POINT —— 异常触发点。 EXCEPT_FILTER —— __except 小括号内的异常过滤代码。 EXCEPT_HANDLER —— __except 大括号内的异常解决代码。 FINALLY_HANDLER —— __finally 大括号内的代码。 以下面的伪码为例,

    01
    领券