本文是《人脸识别完整项目实战》系列博文第13章《实时人脸检测程序设计》,本章内容详细介绍Win10 环境下,基于Visual Studio 2015 + Opencv + Dlib开发环境,如何实现实时视频流人脸检测程序的设计。本文内容已经同步录制成视频课程,课程地址:《人脸识别完整项目实战》
本文是《人脸识别完整项目实战》系列博文第14章《实时人脸特征点标定程序设计》,本章内容详细介绍Win10 环境下,基于Visual Studio 2015 + Opencv + Dlib开发环境,如何实现实时视频流人脸特征点标定程序的设计。本文内容已经同步录制成视频课程,课程地址:《人脸识别完整项目实战》
TPM指的是可信平台模块 (Trusted Platform Module),一种符合安全标准的芯片,可以为硬件提供安全保护。
今日,微软在开发者日上发布了AI开发者平台。 微软还提到,旗下产品都可以本地直接处理AI任务。另外Win10系统将会Visual Studio 15.7 预览版上增加了ONNX文档到UWP应用里,可自
在Windows使用此face_recognition项目时,由于官方不提供Windows版本:安装时总是遇到不同问题。
有人觉得随着智能电视的功能越来越多,盒子的优势越来越不明显,盒子马上就会被取代了。其实不然,现阶段盒子仍然热销就有它热销的原因。
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 本文主要讲解几个部分,(适合一些在读的研究生啥也不会然后接到一些项目无从下手,如果是大佬的话就可以跳过了)先看看网络摄像头的效果吧(在2060的电脑上运行 ) 转自《知乎——kaka》 实践时间Pipeline 2021年9月18日,在github上发布了一套使用ONNXRuntime部署anchor-free系列的YOLOR,依然
推荐补充阅读:『Python开发实战菜鸟教程』工具篇:手把手教学使用VSCode开发Python
Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch。但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。
一个需要通电才能维持生命的机器人,不叫机器人,应该叫机械。历经半年时间,北极熊作者开始涉足机器人领域。想要通过人工智能,改变这个世界。 简单自我介绍一下自己:做过卖纸尿裤的金牌客服,做过提包的小跟班,做过家具组装以及搬运工,黑过天上飞的,地底下跑的,最后借《无间道》那句话:我以前没的选,现在我想做个好人。摇身一变,做了信息安全….今年25岁了,职校毕业,还在读书的你,看了文章后,应该没有什么道理不努力了把?? 前言 决心要做机器人的时候,是在2016年的7月,当时看到市面上的“机器人”,和自己心目中的机器人
项目GitHub地址:https://github.com/xiaosongshine/dlib_face_recognition
最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。如果都没答对就会发送邮件给我,通知有人在动我的电脑并上传该人头像。
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 引言 我把YOLOv5最新版本的模型分别用OpenCV DNN(Python、C++)部署、OpenVINO(Python、C++)部署、ONNXRUNTIME-GPU(Python、C++)部署,然后还测试了CPU/GPU不同平台上的运行速度比较。 软件版本与硬件规格 测试用的硬件与软件信息: GPU 1050TiCPU i7八代OS:Win10 64位OpenVINO2021.4ONNXRUNTI
OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo
face_recognition 宣称是史上最强大,最简单的人脸识别项目。据悉,该项目由软件工程开发师和咨询师 Adam Geitgey 开发,其强大之处在于不仅基于业内领先的 C++ 开源库 dlib 中的深度学习模型,采用的人脸数据集也是由美国麻省大学安姆斯特分校制作的 Labeled Faces in the Wild,它含有从网络收集的 13,000 多张面部图像,准确率高达 99.38%。此外,项目还配备了完整的开发文档和应用案例,特别是兼容树莓派系统。简单之处在于操作者可以直接使用 Python和命令行工具提取、识别、操作人脸。
对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 YOLOX目标检测模型 旷视科技开源了内部目标检测模型-YOLOX,性能与速度全面超越YOLOv5早期版本! 如此神奇原因在于模型结构的修改,下图说明了改了什么地方: 把原来的耦合头部,通过1x1卷积解耦成两个并行的分支,经过一系列处理之后最终取得精度与速度双提升。实验对比结果如下: 论文与代码模型下载地址: https://arxiv.org/pdf/2107.08430.pdfhttps://github
和网上各种首先你要有一个女朋友的系列一样,想进行人脸判断,首先要有脸, 只要能靠确定人脸的位置,那么进行两张人脸是否相似的操作便迎刃而解了。
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。
本文来自CSDN博客专家 ID:xingchenbingbuyu 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实
本文讲述如何使用基于深度学习的人脸识别技术实现人员识别。首先介绍了基于深度学习的人脸识别技术的基本原理和常用框架,然后详细描述了如何使用Dlib库进行人脸检测和关键点检测,并结合代码进行了详细说明。最后,通过实际测试例子展示了人脸检测和人脸识别的具体实现过程。
来源:Python开发 ID:PythonPush 前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库。 点击查看往期: 《图片人脸检测——OpenCV版(二)》 《视频人脸检测——OpenC
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库。 dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的
dlib 库需要单独安装,dlib 库目前已经编译好的安装版本只支持 python 3.6 的版本。
本系列人脸识别文章用的是opencv2,最新版的opencv3.2的代码请参考文章: 《OpenCV之识别自己的脸——C++源码放送》; 《人脸识别源码运行指南》(小编附在文末) 前段时间对人脸检测进行了一些尝试:人脸检测(C++/Python)(http://www.jianshu.com/p/504c081d7397)但是检测和识别是不同的,检测解决的问题是图片中有没有人脸;而识别解决的问题是,如果一张图片中有人脸,这是谁的脸。人脸检测可以利用opencv自带的分类器,但是人脸识别就需要自己收集数据,自
1、苹果宣布ResearchKit研究成果 Apple近日宣布ResearchKit可为自闭症、癫痫和黑色素瘤的全新调查研究提供支持。ResearchKit可协助医生、科学家和其他研究者,更频繁且更精
今年7月份,两大银行接连爆出多名储户的数百万存款被异地“刷脸”盗取,引发全社会关注。其实,因人脸安全问题导致资金被盗、被贷款安全事件已不是新鲜事。
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。如有错误,请多包涵和多多指教。 本文参考文章和图片来源 wbj0110的文章 http://soledede.iteye.com/blog/1940910 赖勇浩的文章 http://blog.csdn.net/gzlaiyonghao/article/detai
松下公司宣布,采用深度学习技术的人脸识别服务器软件将于2018年7月在海外先行推出,而8月才在日本本土推出。 视频:http://imgcdn.atyun.com/2018/02/videoplayb
据凤凰网科技报道,某大型行的人脸识别系统存在漏洞,造成6名储户百万元现金被异地盗取。受害人表示,远在异地的犯罪分子,7次通过了银行的人脸识别,6次通过活检,一次都没识别出来犯罪分子使用的是假人脸。
当今计算机视觉在我们的日常生活中运用的十分广泛,例如人脸识别、自动驾驶、等等 由于对自动驾驶十分感兴趣,因此就花了一些时间实现了车道线检测 环境 笔者的环境配置如下: ubuntu 16.04 python3.7 opencv >=4.0 说明:这里的系统以及python的版本都不是固定的,读者使用win10 win7也是可以的 但是python的版本一定要是3.x的版本 第三方库 这里使用的第三方库,是大家比较熟悉的opencv以及numpy import cv2 import numpy as np 函
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
一直想做机器学习的东东,最近由于工作的调整,终于有开始接触的机会了,哈哈。本文主要代码是来源于“就是这个七昂”的博文,传送门在此:https://blog.csdn.net/qq_42633819/article/details/81191308。”就是这个七昂”大大在他的博文中已经将人脸识别的过程讲的很清楚了。说来忏愧,在算法上我没有改变(我自己还没搞清楚,打算好好看看keras),因为在大大博文评论区看到好多人问怎么实现多个用户的人脸识别。刚开始我也在纳闷,怎么做呢?于是我就大胆尝试了一把,
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
一位浙江理工大学的特聘副教授将杭州野生动物世界告上法庭,认为该动物园强制收集个人生物信息,时隔8个月,近日这起案件终于开庭了。
人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。 立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。
近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
明明是红灯,偏要闯过去,大家都知道闯红灯是违法的,但几乎每个人都闯过红灯,为什么?就因为违法成本低、很少有人管,而且即便闯了也很难被及时发现。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
前段时间和第三方人脸识别供应商对接,写了一个demo,主要功能是人脸识别准确率,增加底库,删除底库,人脸比对等等。让我对人脸识别有了一个新的意识。后来公司需要做个人脸识别的一些应用场景,根据这些场景,看看哪些符合公司的需要。于是自己规划了下。
如今人脸识别系统已经广泛应用于我们的生活中,如数码相机、门禁系统、机场的安全设施 、桌面软件、互联网应用(如Facebook)等等[1]。然而今日的一则关于“高铁人脸识别抓逃犯”的新闻一出[2],在评论中又引发了一阵阵怀疑。怀疑的中心问题在于,人脸识别系统真的能准确无误地在数以亿计的面孔中找出匹配的嫌疑人吗? 降维:减少冗余信息 完整的人脸识别系统一般由多个模块组成,在进行人脸识别之前首先要进行人脸检测(即在一张完整的图片中探测到人脸区域),以及图片的预处理、归一化等步骤(例如自动把倾斜的照片摆正)。本文就
人脸识别是当下最热的领域之一。这两年尤其在安保系统、天眼系统、犯罪分子抓捕系统、人脸锁、人脸考勤机、人脸支付等等领域迅速发展。 学习人脸识别,论文是必不可少的部分。 深度之眼专门推出人脸识别论文精讲直播,为期2天,邀请算法研究员Johnson老师主讲统计学习方法在人脸识别领域应用的开山之作《Eigenfaces For Recognition》。 —— 主讲老师 —— —— 直播内容与安排 —— 第01天 人脸识别技术发展脉络与论文泛读(3月9日) 1.人脸识别技术的发展历程 2.基础知识点讲解(PCA算
《中国新闻周刊》(记者:苑苏文) 李红(化名)万万没想到,诈骗人员从她的交通银行卡偷走近43万元,如入无人之境。 要想从交通银行卡中转账,需要用户在手机银行App上进行人脸识别,并进行短信验证。 李红陷入了诈骗分子的圈套,她的手机短信被拦截,手机号被设置了呼叫转移,令她的验证码落入他人手中,且无法接听银行的确认电话。 更严重的是,“人脸识别”被攻破了。 银行系统后台显示,在进行密码重置和大额转账时,“李红”进行了6次人脸识别比对,均显示“活检成功”。 那几次人脸识别并不是身在北京的李红本人操作,登录者的IP
上周六搞了个修炼写轮眼,利用python代码定位眼球再贴图,有点太粗糙。今儿又周末,效果升级下,玩个变身超级赛亚人——
AI是今年一个大热的话题,各种AI的应用也越来越多,关注的人也越来越多,让AI来助力各行各业。AI实现视频换脸的方案也越来越多,所以博主挑了其中一个方向来学习,介绍。博主选择的是 faceswap,一个开源的视频换脸模型。
据外媒报道,纽约州立法机构刚刚通过了一项法令,禁止在学校中使用人脸识别和其他生物特征识别技术,直至 2022 年。该法案将由州长 Andrew Cuomo 签署。此前,旧金山、马萨诸塞州萨默维尔市等多地也已正式通过了在公共场所禁用人脸识别软件的法案。
领取专属 10元无门槛券
手把手带您无忧上云