理论基础
2.1 贝叶斯定理
这个定理解决了现实生活中经常遇到的问题:已知某条件概率,如何得到两个时间交换后的概率,也就是已知P(B∣A) 的情况下如何求得P(B∣A)
条件概率P(B∣A):事件B...已经发生的情况下,事件A发生的概率。...cla_all_num = 0
cla_num = {}
cla_tag_num = {}
landa = 0.6# 拉普拉斯修正值
def train(taglist, cla): # 训练,每次插入一条数据...,'硬滑','是'],
['青绿','蜷缩','沉闷','清晰','凹陷','硬滑','是'],
['浅白','蜷缩','浊响','清晰'...['浅白','稍蜷','浊响','稍糊','凹陷','硬滑','否'],
['浅白','稍蜷','沉闷','稍糊','凹陷','硬滑','否'],