今天要处理的问题对于一个只学了线性回归的机器学习初学者来说还是比较棘手——通过已知的几组数据预测一组数据。...思路整理 磨刀时间 tensorflow关于回归的文档教程 udacity的Titanic实例 砍柴时间 python读取excel表格的数据 尝试一维输入预测输出 尝试五维输入预测输出 开始磨刀 读TensorFlow...磨刀获得的备选方案 tf.contrib.learn tf.contrib.learn是TensorFlow的高级API,定义了很多常用模型,可以简化编码。...xlsx另存为csv 测试读取,先读取前几行 1import tensorflow as tf 2import numpy as np 3import pandas as pd 4train_data_file...将要预测的列作为输出,并从数据表中删除 1# 将要预测的列赋值给输出 2train_data_outcomes = train_data['your outcome key'] 3# 从输入DataFrame
思路整理 磨刀时间 tensorflow关于回归的文档教程 udacity的Titanic实例 砍柴时间 python读取excel表格的数据 尝试一维输入预测输出 尝试五维输入预测输出 开始磨刀 读TensorFlow...磨刀获得的备选方案 tf.contrib.learn tf.contrib.learn是TensorFlow的高级API,定义了很多常用模型,可以简化编码。...- xlsx另存为csv - 测试读取,先读取前几行 import tensorflow as tf import numpy as np import pandas as pd train_data_file...- 将要预测的列作为输出,并从数据表中删除 # 将要预测的列赋值给输出 train_data_outcomes = train_data['your outcome key'] # 从输入DataFrame...train_data_outcomes的类型是 训练预测和评估 使用tf.contrib.learn.LinearRegressor尝试一维输入预测输出 一维输入是指x=[1,2,3,4,5,……],即只取
时序预测是一个经典的话题,应用面也很广; 结合LSTM来做也是一个效果比较好的方式. 这次准备使用TF来进行时序预测,计划写两篇: 1....TFTS Tensorflow Time Series(TFTS)模块是TF1.3版本中引入的,官方是这么介绍的: TensorFlow Time Series (TFTS) is a collection...地址: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/timeseries, 里面给出了相关的examples...主要提供三种预测模型: AR、Anomaly Mixture AR、LSTM Examples 读入数据 你的数据可以是两种: 1. numpy array 2. from a CSV file...红色是预测的那一段.
2019 @author: xiuzhang Eastmount CSDN """ import os import glob import cv2 import numpy as np import tensorflow...----------------------------------- # 用于保存和载入模型 saver = tf.train.Saver() # 训练或预测 train = False # 模型文件路径...,最终预测正确181张图片,准确度为0.905。...测试模式 INFO:tensorflow:Restoring parameters from model/image_model 从model/image_model载入模型 b'photo/photo...: 181 准确度为: 0.905 四.总结 写到这里,这篇文章就讲解完毕,更多TensorFlow深度学习文章会继续分享,同时实验评价、RNN、LSTM、各专业的案例都会进行深入讲解。
TIMESTEPS]]) return np.array(X,dtype=np.float32),np.array(y,dtype=np.float32) 我们要做的任务为根据前TIMESTEPS-1个采样点来预测第...lstm_model) 调用fit来训练模型: regressor.fit(train_X,train_y,batch_size=BATCH_SIZE,steps=TRAINING_STEPS) 调用predict预测结果...返回值为(预测结果,损失值,训练操作):predictions,loss,train_op 预测 & 评价 predicted = [[pred] for pred in regressor.predict
本篇博文将使用TensorFlow神经网络进行股市的预测,利用数据样本学习,得到相关因素预测股票走势。...采用本实例所设计的神经网络预测股票收盘均价,并可视化预测结果。 ?...else: plt.plot(dateOne,priceOne,'g',lw=6) plt.xlabel("date") plt.ylabel("price") 3、神经网络设计 基于TensorFlow...使用前需要安装TensorFlow模块,指令如下所示: pip install tensorflow 【拓展】4行指令解决pip下载Python第三方库太慢问题(pip更换国内下载源) 实现代码如下所示...关注公众号,回复关键字:股票预测,获取项目源码~
有了这些数据,他们就希望能利用深度学习模型和 500 支成分股价预测 S&P 500 指数。...不然的话我们就使用了未来的时序预测信息,这常常令预测度量偏向于正向。 TensorFlow 简介 TensorFlow 是一个十分优秀的框架,目前是深度学习和神经网络方面用户最多的框架。...MSE 计算预测值与目标值之间的平均平方误差。...在输出层,TensorFlow 将会比较当前批量的模型预测和实际观察目标 Y。然后,TensorFlow 会进行优化,使用选择的学习方案更新网络的参数。...测试集的预测的平均百分误差率等于 5.31%,这是很不错的结果。 ?
预测燃油效率对于优化车辆性能和减少碳排放至关重要,这可以使用python库tensorflow进行预测。...在本文中,我们将探讨如何利用流行的机器学习库 Tensorflow 的强大功能来使用 Python 预测燃油效率。通过基于 Auto MPG 数据集构建预测模型,我们可以准确估计车辆的燃油效率。...让我们深入了解在 Python 中使用 Tensorflow 进行准确的燃油效率预测的过程。 自动英里/加仑数据集 为了准确预测燃油效率,我们需要一个可靠的数据集。...如何使用TensorFlow预测燃油效率?...下面的程序使用 Tensorflow 构建一个神经网络模型,用于从 Auto MPG 数据集预测燃油效率。
这里采用LSTM来进行时间序列预测,结构为: 训练数据生成—>隐藏输入层—>LSTM神经层—>隐藏输出层(全连接层)—>结果 当然,也可以根据任务增加隐藏层,LSTM层以及全连接层的数量。...tensorflow中已经为我们准备好了LSTM层的接口,根据需要配置即可。...,输出序列是t > t+23;也可以输入序列为t-24之前的序列来预测t时候的值,进行24次预测;也可以用t-1之前的序列要预测t时,每次预测结果再代入输入中预测t时刻之后的值。...OUTPUT_SIZE 为输出的维度,就是输出序列的长度;如果输出也是一个序列的话,可以将y的维度设置为[None,TIME_STEPS,OUTPUT_SIZE] import numpy as np import tensorflow...输出序列的向量维度 # CELL_SIZE:LSTM神经层的细胞数,也是LSTM层的输入和输出维度(这两个维度相同),也即为LSTMCell中的num_units参数; # LEARNING_RATE:tensorflow
本篇是后面用tensorflow做回归时的一个参照,忍不住要说的是sklearn真是简单好用,要不是他没有卷积cnn等时髦模型,真是不想用其他家的了。...boston房价这个数据也就506行,13个特征(列),对cnn来说实在太少了,没个10万行数据,都看不出它的优势; 另外cnn虽然不用人工特征优选,但是搭建它的拓扑结构实在是个难搞的事,最让人炸裂的是tensorflow...article/details/52979206 周莫烦的系列视频教程,跪地推荐 结果是这样的: 上文中只训练了200次,其实正常来说都是1000次起的,无奈手里只有小mac mini,显卡是N卡的同学可以用tensorflow...RNN之递归神经网路LSTM 在tensorflow里RNN才是做回归计算的正规军,其中LSTM更是让人工智能有了记忆,如果cnn最适合做的是图像识别,那么LSTM就是视频识别。...网上的教程多是用正余弦数据在做预测,输入输出都是一维,我这用波士顿房价,输入是13个特征! 注意与前面两个模型不同的是,没有用train_test_split把训练数据分割,而是用的时序数据。
Tensorflow是一个优秀的深度学习框架,具体有啥好处,可以百度了解哈。...本文分享使用Tensorflow神经网络进行股市的预测 ---- 1、数据来源 首先找到一组股票数据,数据可以网络上爬虫,东方财富、大智慧都有。爬虫方法参看以前的文章。...预测 基于Tensorflow神经网络框架,设计了三层神经网络,其中隐含层包括25个节点,设计的神经网络用来预测股票的收盘价。...i in range(0, 20000): sess.run(train_step, feed_dict={x: dateNormal, y: priceNormal}) # 预测...完整的代码如下: import numpy as np import matplotlib.pyplot as plt import tensorflow as tf # import tensorflow.compat.v1
根据先前的观察预测一系列实数。 传统的神经网络架构不能做到这一点,这就是为什么要复制神经网络来解决这个问题,因为它们允许存储以前的信息来预测将来的事件。...所以如果我们的第一个单元格是10个time_steps单元格,那么对于我们想做的每个预测,我们需要为单元格提供10个历史数据点。 y值应该对应于我们想要预测的数据的第十个值。...我们首先定义超参数 现在我们可以根据我们的模型创建一个回归函数 预测sin函数 测试集 real sin function 一起预测sin和cos函数 测试集 predicted sin-cos function...You will need the appropriate version of tensorflow for your platform, this example is for mac..../tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl (ltsm) $ pip install -r .
训练神经网络 现在训练数据准备好了,是时候为时间序列预测创建一个模型,为实现这个目的,将使用TensorFlow.js框架。...TensorFlow.js是一个用JavaScript开发和训练机器学习模型的库,可以在Web浏览器中部署这些机器学习功能。 选择顺序模型,其简单地连接每个层并在训练过程中将数据从输入传递到输出。...验证和预测 现在模型已经过训练,现在是时候用它来预测未来的值,它是移动平均线。实际上使用剩余的30%的数据进行预测,这能够看到预测值与实际值的接近程度。...使用TensorFlow.js,可以在Web浏览器上进行机器学习,这实际上非常酷。...在Github上探索演示,这个实验是100%教育,绝不是交易预测工具: 股票预测(TensorFlow.js) https://lonedune.github.io/tfjs-stocks/demo/
image.png 2.配置环境 使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。...读者在有nvidia显卡的情况下,安装GPU版tensorflow会提高计算速度50倍。...warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.examples.tutorials.mnist...image.png import warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.examples.tutorials.mnist...', fileName) 上面一段代码的运行结果如下: 特征矩阵的形状: (28000, 784) 预测值的形状: (28000,) 预测结果已经保存到文件 kaggle_commit3.csv
从今天起,每天好文不断,公众号整体内容提升 用于分类的多层感知器 是否有可能创建一个神经网络来预测一组交易指标的日常市场走势?...我们将使用Tensorflow创建和开发一个简单的模型框架,以及提出一些对初步结果改进的意见。...ML的任务和输入特征 为了保持基本设计简单,它设置了二进制分类任务,预测第二天的收盘价是高于还是低于当前收盘价,对应于预测下一个时间段是做多还是做空。...网络“长输出”和“短输出”被用作二元预测器,高置信度值用作未来一天的模型预测。 架构中的“密集”层意味着每个神经元都连接到下面层中所有神经元的输出。...因此,它可以通过更长期的预测来测试。 Alpaca 如何获取代码 在后台输入 MLP
文章目录 tensorflow tensorflow # -*- coding:utf-8 -*- # /usr/bin/python ''' Author:Yan Errol Email:2681506...:2019-04-23--08:12 Describe: BP网络的设计 ''' import numpy as np import matplotlib.pyplot as plt import tensorflow.../checkpoint/checkpoint.cpkt") # 预测 # 加载测试集 x_input = [] test_data_path = "..
什么时候要买或者卖 股票走势预测 CNN 交通标志的图像由4 5×5卷积内核过滤,创建4个特征图,这些特征图通过最大池合并采样。 下一层对这些子采样图像应用10 5×5卷积核,并再次汇集特征图。...as tffrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.contrib import layersimport...测试:2016/01〜2016/08 交易策略:回报 =(明天的收盘价) - (今天收盘价)如果预测买入。 反之。 表现不佳 例子2: 交易策略:达到+10%或者-5%时卖出。...5日后涨跌准确率为:58%~60% Loss:预测和实际的差,应随着训练次数增加而下降。...DQN_KD_value使用KD值图片进行预测。 python DQN_kd_pic.py //this call KD_draw.py and build model. ?
0.编程环境 安装tensorflow命令:pip install tensorflow 操作系统:Win10 tensorflow版本:1.6 tensorboard版本:1.6 python...input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过...One-Hot编码; 第7行代码定义变量batch_size的值为100; 第8、9行代码中placeholder中文叫做占位符,将每次训练的特征矩阵X和预测目标值y赋值给变量X_holder和y_holder...交叉熵的函数如下图所示,其中p(x)是实际值,q(x)是预测值。 ?...5.如何进一步提高模型准确率,请阅读本文作者的另一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》,链接:https://www.jianshu.com/p/9a4ae5655ca6
最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。...原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。...num_layers) 3、根据训练数据输出误差反向调整模型 with tf.variable_scope("Model", reuse = None, initializer = initializer):#tensorflow...1.25) optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step) 4、预测新一轮输出...celloutput, softmax_w) + softmax_b partial_logits = tf.nn.softmax(partial_logits) 5、根据之前建立的操作,运行tensorflow
领取专属 10元无门槛券
手把手带您无忧上云