Python+Tensorflow+Opencv的人脸识别 简单的人脸识别 准备工作 开始——先获取必要的人脸图像 训练——分类吧 识别大脸 简单的人脸识别 一直想做机器学习的东东,最近由于工作的调整,...就是这个七昂”大大在他的博文中已经将人脸识别的过程讲的很清楚了。说来忏愧,在算法上我没有改变(我自己还没搞清楚,打算好好看看keras),因为在大大博文评论区看到好多人问怎么实现多个用户的人脸识别。...于是我就大胆尝试了一把, 准备工作 在做人脸识别前,你的有一个可以做的环境吧,在这里我当一次搬运工。开发环境的配置可以在网上找一堆,这里简单介绍一下我自己的。...你需要到的库有:(我python3.7.1,以下是我安装的版本) 1.tensorflow 1.13.1 2.keras 2.2.4 3.scikit-learn 0.20.3 4.numpy(...开始——先获取必要的人脸图像 人脸识别其实就是分类和聚类的过程。
''' 数据材料 这是一个小型的人脸数据库,一共有40个人,每个人有10张照片作为样本数据。 这些图片都是黑白照片,意味着这些图片都只有灰度0-255,没有rgb三通道。...那么每张照片的大小就是: (1190 / 20)× (942 / 20)= 57 × 47 (大约,以为每张图片之间存在间距) 问题解决 10类样本,利用CNN训练可以分类10类数据的神经网络,与手写字符识别类似...''' #coding=utf-8 import os import numpy as np import tensorflow as tf import matplotlib.pyplot
概述 本项目基于tensorflow机器学习,实现web端人脸识别登陆,人脸注册。 提供手机端页面(face_login_app)和网页端页面(vue_element-admin)。...功能 软件架构 tensorflow 用于人脸识别的机器学习 vue web端开发 redis 保存token,因为方便失效 MongoDB 保存人脸已编码的数据和用户信息 flask 用于开发web...接口,和返回静态页面 face_recognition 人脸识别python库,可以从照片中识别人脸 使用 更新记录 下载文章文字内容到txt 下载文章图片 保存HTML文件,并将图片链接指向本地...生成模型,验证图片等 face_login_app 文件夹中保存移动端代码,使用weui+vue,build后的dist代码放入到APP的dist中 vue-element-admin 文件夹为网页边人脸识别登陆前端代码...特别说明 手机端访问摄像头需要https 目前iPhone的页面显示还有问题 每次注册时tensorflow都要进行一次全局训练 下载 下载地址 https://gitee.com/caibojian
人脸识别的应用非常广泛,而且进展特别快。如LFW的评测结果上已经都有快接近99.9%的。...而深度学习的框架可以使用现有的成熟模型,如tensorflow slim中的每一种模型。 而最后一个Triplet Loss则是采用了三元组的损失函数。...测试:(代码见:https://github.com/davidsandberg/facenet) 由于facenet无需限制人脸对齐,但是代码中提供了MTCNN的对齐,而且在LFW评分中也发现经过对齐的分数能够提高一个档次
一,前言 本人是机械专业在读硕士,在完成暑假实践的时候接触到了人脸识别,对这一实现很感兴趣,所以花了大概十天时间做出了自己的人脸识别。这篇文章应该是很详细的了所以帮你实现人脸识别应该没什么问题。...— 0.19.0 三、正式开始 1,识别人脸 实现人脸识别简单程序没几行,但是我们要实现的是识别这个是谁的脸。...首先我们让系统识别人脸,这是opencv的工作,我们只需要调用其中的API函数就可以了。下面是调用opencv实现对于人脸的识别。...要想识别出这张人脸属于谁,我们肯定需要大量的自己的脸和别人的脸,这样才能区别开。然后将这些数据输入到Tensorflow中建立我们自己脸的模型。...因为我装的是tensorflow因此我直接使用了keras的Tensorflow版,同时,为了验证其它深度学习库的效率和准确率,我还使用了Theano,利用CNN——卷积神经网络来训练我的人脸识别模型。
FaceNet是谷歌提出的人脸识别模型,它跟其他人脸识别模型最大的一个不同就是它不是一个中间层输出,而是直接在欧几里德低维空间嵌入生成人脸特征,这个对以后的各种识别、分类、相似度比较都非常方便。...FaceNet网络设计目标任务有如下 OpenCV学堂-原创精华文章 《tensorflow零基础入门视频教程》 OpenCV研习社介绍与加入指南 MTCNN实时人脸检测网络详解与代码演示 详解对象检测网络性能评价指标...mAP计算 卷积神经网络是如何实现不变性特征提取的 深度学习中常用的图像数据增强方法-纯干货 基于OpenCV与tensorflow实现实时手势识别 tensorflow风格迁移网络训练与使用...使用tensorflow layers相关API快速构建卷积神经网络 基于OpenCV Python实现二维码检测与识别
【导读】近期,浙江大学学生Boyuan Jiang使用TensorFlow实现了一个人脸年龄和性别识别的工具,首先使用dlib来检测和对齐图片中的人脸,然后使用CNN深度网络来估计年龄和性别。...TensorFlow实现的人脸性别/年龄识别 这是一个人脸年龄和性别识别的TensorFlow工具,首先使用dlib来检测和对齐图片中的人脸,然后使用CNN深度网络来估计年龄和性别。...如下所示,该项目可以同时估计一张照片中的多个人脸 。 ? ? 安装python依赖包 本项目需要以下依赖包,已经在CenotOS7系统上的Python2.7.14环境中测试过。...tensorflow==1.4 dlib==19.7.99 cv2 matplotlib==2.1.0 imutils==0.4.3 numpy==1.13.3 pandas==0.20.3 使用方法...因为我们首先需要进行非常耗时的人脸检测和对齐步棸,所以我们建议使用尽可能多的核心数。Intel E5-2667 v4 带有 32 个核心运行完需要大概50分钟。
,使用tensorflow重构了一下之前自己做的那个表情识别系统,直接使用fer2013.csv转tfrecord训练,不需再逐张转为图片,训练更快,代码更精简,支持中断训练之后载入模型继续训练等等 已在...提供给需要这个表情识别系统的tensorflow版本的人 ---- 原Keras版本地址:https://blog.csdn.net/shillyshally/article/details/80912854...搭建并训练了卷积神经网络模型,用于人脸表情识别,训练集和测试集均采用kaggle的fer2013数据集。...1.卷积神经网络模型的训练 1.1获取数据集 使用公开的数据集一方面可以节约收集数据的时间,另一方面可以更公平地评价模型以及人脸表情分类器的性能,因此,使用了kaggle面部表情识别竞赛所使用的fer2013...str(temp_test_acc)) print(' --log saved--') if __name__ == '__main__': tf.app.run() 2.人脸表情识别模块
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...while(i<3) { // 匹配成功3次退出 capture.read(video); HighGui.imshow("实时人脸识别...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...# 根据训练的数据来对新图片进行识别的过程。...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别...特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法..., num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片...8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels...face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别.../trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[:...(gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
人脸识别是计算机视觉领域的重要应用之一,通过TensorFlow和Keras等深度学习工具,我们可以构建一个简单而强大的人脸识别系统。...在这篇博客中,我们将详细介绍如何使用TensorFlow和Keras构建一个人脸识别系统,包括数据准备、模型构建、训练和测试。...然后运行以下命令安装TensorFlow和Keras:pip install tensorflowpip install keras步骤2:收集人脸数据集人脸识别系统需要一个包含人脸图像的数据集进行训练...Keras构建一个卷积神经网络(CNN)模型,用于人脸识别。...和Keras构建一个人脸识别系统。
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后...(降维),再进行数据分析和处理,获取识别结果。...num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
领取专属 10元无门槛券
手把手带您无忧上云