RTX(NVIDIA的GPU加速卡)在Linux系统下的服务主要涉及到NVIDIA提供的驱动程序和相关工具,以确保GPU能够在Linux环境中正常工作,并为各种应用提供加速功能。
以下是一个简单的CUDA程序示例,用于计算两个向量的和:
#include <stdio.h>
#include <cuda_runtime.h>
__global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements) {
C[i] = A[i] + B[i];
}
}
int main(void) {
int numElements = 50000;
size_t size = numElements * sizeof(float);
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);
// Initialize input vectors
for (int i = 0; i < numElements; ++i) {
h_A[i] = rand() % 100;
h_B[i] = rand() % 100;
}
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, size);
cudaMalloc(&d_B, size);
cudaMalloc(&d_C, size);
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
int threadsPerBlock = 256;
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
// Verify result (optional)
for (int i = 0; i < numElements; i++) {
if (h_A[i] + h_B[i] != h_C[i]) {
printf("Error: Result verification failed at index %d\n", i);
break;
}
}
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
free(h_A);
free(h_B);
free(h_C);
return 0;
}
这个示例展示了如何使用CUDA编写一个简单的GPU加速程序。注意,在Linux系统上运行CUDA程序需要先
领取专属 10元无门槛券
手把手带您无忧上云