本文通过介绍如何利用Sqoop对不同数据源进行数据导入,详细描述了Sqoop的导入流程、数据源配置、抽取和加载方式,并通过实例介绍了具体操作。
通过阿里云数据传输,并使用 dts-ads-writer 插件, 可以将您在阿里云的云数据库RDS for MySQL中数据表的变更实时同步到分析型数据库中对应的实时写入表中(RDS端目前暂时仅支持MySQL引擎)。 前提条件 您需要在您RDS for MySQL所在的云账号下开通阿里云数据传输服务。并 点击此处 下载dts-ads-writer插件到您的一台服务器上并解压(需要该服务器可以访问互联网,建议使用阿里云ECS以最大限度保障可用性)。服务器上需要有Java 6或以上的运行环境(JRE/JDK)。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51837457
大家好,不管是离线数仓与实时数仓,建设的时候都少不了架构设计,今天来学习一下常见的架构及发展演变过程。
AWS re: Invent 2018上,AWS CEO Andy Jassy发布了QLDB - Quantum Ledger Database(量子账本数据库)[1]。引用Amazon关于QLDB的FAQ[2],QLDB是一款特型数据库,它能够提供应用数据全部的历史变迁。 QLDB与我们之前提出的TDSQL全时态数据库有些相似,本文分析比较QLDB和TDSQL全时态数据库的异同。 一、 生产背景 1.1 QLDB产生背景 Andy Jassy提到,QLDB其实已经在AWS中稳定运行了几年,为EC2
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80281643
上一篇详细讲解了如何用Canal和Kafka,将MySQL数据实时全量同步到Greenplum。对照本专题第一篇中图1-1的数据仓库架构,我们已经实现了ETL的实时抽取过程,将数据同步到RDS中。本篇继续介绍如何实现后面的数据装载过程。实现实时数据装载的总体步骤可归纳为:
随着各行各业电子信息化的不断加深,线上交易数据保持了长时间高速增长的态势,对数据存储的需求越来越大,数据库管理系统(DBMS)面临越来越大的性能、空间和稳定性压力。在此过程中,得利于计算&存储&网络等硬件领域的不断进步,业界流行的数据库管理系统逐步从单机架构向分布式架构演变。笔者希冀从梳理数据库管理系统所面临的一个又一个实际挑战及业界所提出的诸多解决方案的过程中,发现片缕灵感以指引未来的数据库开发工作。
客如云成立于 2012 年,是全球领先、 国内最大的 SaaS 系统公司。 目前面向餐饮、 零售等服务业商家, 提供软硬一体的新一代智能化前台、收银等 SaaS 云服务,包括预订、排队、外卖、点餐、收银、会员管理、进销存等系统服务,并将数据实时传达云端。我们是客如云的大数据基础架构组,负责公司的大数据架构和建设工作,为公司提供大数据基础数据服务。
二、按需装载 前面已经做了“初始装载”和“定期装载”。还有一种需要熟悉的装载类型,按需装载。所谓“按需装载”指的是,在正常调度之外,当源数据有效或者数据仓库需要时进行装载。例如,促销销售源数据只有在促销期内有效,而在其它时间是无效的,而对促销期数据就要进行按需装载。 在“建立数据仓库示例模型”中讨论的日期维度数据生成可以看做是一种按需装载。数据仓库预先装载了日期,当日期用完时,需要再次运行预装载。 本节的主题是按需装载,首先修改数据库模式,然后在DW数据库上执行按需装载,使用促销期场景进行说明。定期装载不适合促销期场景,因为促销期数据并不是按调度定期装载。下面是需要装载的促销期内容,存储在source.promo_schedule表中。
日志服务最近在原有 30+ 种数据采集渠道 基础上,新增 MySQL Binlog、MySQL select 等数据库方案,仍然主打快捷、实时、稳定、所见即所得的特点。
OLAP 是一个很卷的赛道,创业公司也众多。在本文中,笔者基于 10+ 年的大数据与数据仓库的工作经验,就目前的主流趋势:离在线一体化、引擎一体化、云原生化等写一些思考,抛砖引玉,希望能与各位共同探讨。
开发机器学习解决方案提升现有的预测算法并不是一件容易的事情。这需要大量的工作来保证其正确性,包括清除数据、建立基础结构、测试和再测试模型以及最终部署算法。 这里有七种机器学习服务,它们可以帮助你减少部署机器学习解决方案的痛苦。 1. 微软Azure机器学习 基于微软Azure云平台的Azure机器学习(Azure Machine Learning)为所有的数据科学家提供了一个流线型的体验:从只用一个网页浏览器设置,到使用拖放手势和简单的数据流图来设置实验。Machine Learning Studio提供了
本篇重点是针对销售订单示例创建并测试数据装载的Kettle作业和转换。在此之前,先简要介绍数据清洗的概念,并说明如何使用Kettle完成常见的数据清洗工作。由于本示例中Kettle在Hadoop上的ETL实现依赖于Hive,所以之后对Hive做一个概括的介绍,包括它的体系结构、工作流程和优化。最后用完整的的Kettle作业演示如何实现销售订单数据仓库的数据转换与装载。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
在 Erda 的技术架构中,我们使用了 kong 作为 API 网关的技术选型。因其具备高并发低延时的特性,同时结合了 Kubernetes Ingress Controller,基于云原生的声明式配置方式,能够实现丰富的 API 策略。
根据文章内容总结摘要。
本文介绍了如何利用Rust语言和Cargo管理大型游戏服务器的程序架构,实现了游戏服务器的模块化设计,并利用Websocket通信机制实现了跨平台的游戏服务器通信。同时,本文还介绍了一些重要的基础概念和技术,包括Rust语言、Cargo、Websocket、游戏服务器、分布式系统、同步复制、负载均衡、Rust设计模式等。通过本文的学习,读者可以掌握利用Rust和Cargo开发高性能、可扩展、跨平台的游戏服务器的程序架构和技巧。
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
SQLite作为嵌入式数据库的翘楚,广受欢迎! 新生命团队自2010年以来,投入大量精力对SQLite进行学习研究,成功应用于各系统非致命数据场合。
运维监控工具千千万,仅开源的解决方案就有流量监控(MRTG、Cacti、SmokePing、Graphite 等)和性能告警(Nagios、Zabbix、Zenoss Core、Ganglia、OpenTSDB等)可供选择。
作为云原生技术先驱,腾讯云数据库内核团队致力于不断提升产品的可用性、可靠性、性能和可扩展性,为用户提供更加极致的体验。为帮助用户了解极致体验背后的关键技术点,本期带来腾讯云数据库专家工程师王鲁俊给大家分享的腾讯云原生数据库TDSQL-C的架构探索和实践,内容主要分为四个部分: 本次分享主要分为四个部分: 第一部分,介绍腾讯云原生数据库 TDSQL-C 产品架构,包括产品的研发背景和架构主要特性; 第二部分,分享用户场景实践,针对线上真实的用户场景做一些分析和针对性实践; 第三部分,分享系统关键优化; 第四部
SQLite单表4亿订单,大数据测试 SQLite作为嵌入式数据库的翘楚,广受欢迎! 新生命团队自2010年以来,投入大量精力对SQLite进行学习研究,成功应用于各系统非致命数据场合。 SQLite极致性能 关闭同步,Synchronous=Off,提升性能。添删改操作时不必同步等待写入磁盘,操作系统会延迟若干毫秒批量写入 设置WAL模式,Journal Mode=WAL,减少锁定。写入向前日志模式,避免多线程访问时锁定数据库,写入时不必使用排它锁影响其它线程读取,而是把事务操作写入到WAL文件中,延迟合
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51943736
阿里云RDS FOR MySQL(MySQL5.7版本)数据库业务表每月新增数据量超过千万,随着数据量持续增加,我们业务出现大表慢查询,在业务高峰期主业务表的慢查询需要几十秒严重影响业务
如果这时候直接去看MySQL、Mongo、HBase、Redis等数据库的用法、特点、区别,其实有点太着急了。
导语:Power BI刷新数据时,每次要把所有数据源文件全部读一遍,文件多了,刷新都要等半天……能不能做成增量刷新?
https://aroussi.com/post/python-yahoo-finance
背景: 因历史原因, 前期多个服务共用一个rds实例和一个redis实例, 在实际使用中经常会因某一个服务异常导致rds或redis负载异常,进而影响其他服务造成雪崩。 故进行基础资源拆分来隔离风险。
Tapdata Cloud 是国内首家异构数据实时同步云平台,目前支持 Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka、GP、MQ、ClickHouse、Hazelcast Cloud、ADB MySQL、ADB PostgreSQL、KunDB、TiDB、MariaDB、Aliyun MariaDB、Aliyun MongoDB、Aliyun RDS for SQLServer、Aliyun RDS for PG、Aliyun RDS for MySQL、TencentDB for MySQL、TencentDB for MariaDB、TencentDB for PG、TencentDB for SQLServer、TencentDB MongoDB、Vika、Apache Doris、PolarDB MySQL、轻流、PolarDB PostgreSQL、Amazon RDS for MySQL 之间的数据同步,并对用户永久免费。
大家好,之前我们已经将疫情可视化的各种操作基本都讲了一遍,从爬取数据到数据分析、建模、可视化甚至有关如何开发疫情实时追踪网站我们都讲了一遍,因此很久没有更新过疫情相关的文章。但最近几乎每天都有小伙伴在后台问我如何获取最新的疫情数据,尤其是历史数据很难找到。在三月份我曾经在疫情数据哪里找,看这篇就够了这篇文章中详细介绍了5种获取疫情数据的方法,不过部分API已经失效,了解到很多读者是为了科研、论文需要使用相关数据,所以今天我们再来聊聊现在如何取得疫情相关数据。
数据滤波是指对临近的多次测量结果进行平滑过滤的数据处理方法(递推滤波)。通过设置滤波方法寄存器 FIT_TYPE.[3:0]来指定滤波方法, 滤波样本数量寄存器 FIT_COUNT.[7:0]用来指定参与计算的历史数据个数。
SaaS模式下,企业用户无需维护系统,只需登录就可以享受系统功能带来的便利。但是SaaS服务和数据部署在云端而不是本地机房,可能存在不可控问题。
一、增加列 数据仓库最常碰到的扩展是给一个已经存在的维度表和事实表添加列。本节说明如何在客户维度表和销售订单事实表上添加列,并在新列上应用SCD2,以及对定时装载脚本所做的修改。假设需要在客户维度中增加送货地址属性,并在销售订单事实表中增加数量度量值。 先看一下增加列时模式发生的变化。 修改后源数据库模式如下图所示。
编者按:本文源自美国机器学习专家 Jason Brownlee 的博客,AI 研习社编译。 时间序列预测,究竟需要多少历史数据? 显然,这个问题并没有一个固定的答案,而是会根据特定的问题而改变。 在本教程中,我们将基于 Python 语言,对模型输入大小不同的历史数据,对时间序列预测问题展开讨论,探究历史数据对 ARIMA 预测模型的性能影响。(注:ARIMA 全程是 Autoregressive Integrated Moving Average Model,即自回归积分滑动平均模型) 具体来说,在本
当在 Git 仓库中存储大的二进制文件时(>50MB),比如 R 里面的 RData 或 RDS 文件,默认的 git 提交方式无法获取二进制文件的修改,会让仓库越来越大。在这种情况下,将仓库 push 到远程会出现警告。
2023年台风季节即将到来,人们对于台风的关注和担忧也逐渐增加。根据气象部门的预测,今年的台风活动可能会比往年更加频繁和热闹。这引发了人们对于台风灾害的关注和应对措施的思考。在过去的几年中,全球范围内的台风活动呈现出一些明显的趋势。首先,台风的数量似乎在逐渐增加。这可能是由于气候变化导致海洋温度升高和大气流量,从而导致台风.其次,台风的强度也有所增加。研究表明,温暖的海洋表面温度和湿度的增加可能导致台风的强度增加,从而变得更具破坏性和威力。最后,台风的路径也发生了一些变化。
制造业如何实现大数据应用落地 朱志伟 在近几年里, “大数据”已经完全占据了主流分析师和商业媒体的想象力。以大数据为基础的新一代信息驱动企业的决策正在成为主流,而且,越来越多的企业正在选择通过利用无数相互连接的数据库系统的支持,来获取越来越大量的数据,然后,通过越来越复杂的算法来指导企业发展。 对于制造业来说大数据是否是一个完全陌生的挑战呢?事实上,自上世纪80年代,制造业已经开始依靠历史数据库来管理大量相关的制造业务数据了。 钱塘数据应用和交易平台正式上线现场,有幸,来自杭州金电联航的朱志伟为500多位
从数据层面来理解,数据可以分为几个维度,比如流水型数据,状态型数据库,配置型数据。流水型数据的依赖最低,基本就是时间维度的扩展,所以从数据的安全角度来说,如果丢数据对业务的影响还是有限的,配置型数据是数据字典级别的,影响范围更是小很多。关键的就是状态型数据,这是非常核心的,因为只是标识状态的变化,如果换做一个场景,比如是金额,那这个维度的影响是很大的。 从数据架构的角度来说,尽可能希望把一些状态型数据的变化,通过流水数据的方式来做一个历史沉淀,我们暂且成为历史数据吧。 比如 更新状态数据,余额为200
三、维度子集 有些需求不需要最细节的数据。例如更想要某个月而不是某天的记录。再比如相对于全部的销售数据,可能对某些特定状态的数据更感兴趣等。这些特定维度包含在从细节维度选择的行中,所以叫维度子集。维度子集比细节维度的数据少,因此更易使用,查询也更快。 本节中将准备两个特定维度,它们均取自现有的维度:月份维度(日期维度的子集),Pennsylvania州客户维度(客户维度的子集)。 1. 建立月份维度表 执行下面的脚本建立月份维度表。注意月份维度不包含promo_ind列,该列不适用月层次上,因为一个月中可能有多个促销期,而且并不是一个月中的每一天都是促销期。促销标记适用于天这个层次。
[每周 Postgres 世界动态] 本文全网唯一源地址 产品新闻 信息来源:网址基础上整理。 时间 消息 2022-04-30 Apache AGE(孵化中) 发布新版本 1.0.0. Apache AGE 是一个基于 PostgreSQL 的针对快速分析和实时数据处理的图数据库插件。 2022-04-28 pg_ivm 发布新版本 1.0. pg_ivm 是一个提供增量视图维护(IVM)功能的插件。 博客动态 信息来源:网址 作者 文章 (Highgo)Asif Rehman PostgreSQL 1
系统版本表是SQL:2011标准中首次引入的功能。系统版本表存储所有更改的历史数据,而不仅仅是当前时刻有效的数据。举个例子,同一行数据一秒内被更改了10次,那么就会保存10份不同时间的版本数据。就像《源代码》电影里的平行世界理论一样,你可以退回任意时间里。从而有效保障你的数据是安全的,DBA手抖或程序BUG引起的数据丢失,在MariaDB10.3里已成为过去。
事件报警数据库通常用关系数据库就可以完成,技术难度不是很大。比如在SQL server数据库里创建一个table,包含如下几列:报警产生时间,确认时间,报警名称,描述,报警等级,确认与否等信息;有新报警,用insert语句将数据插入;读取的时候用select语句进行查询。
Lambda架构使用了批处理和流处理两种不同的处理方式来处理数据。数据首先通过流处理层进行实时处理,然后再通过批处理层进行离线处理,最后将两种处理结果合并起来得到最终的结果。Lambda架构的优点是可以同时处理实时和历史数据,并且可以保证数据的一致性,但是需要维护两套不同的代码和基础设施。
核心 因为是分类算法,因此不像ARIMA一样预测的是时序。分类就要有东西可分,因此将当日涨记为1,跌记为0,作为分类的依据。使用历史数据作为训练数据。 处理数据: 股票历史数据来源于yahoo_finance api,获取其中Open,Close,Low,High,Volume作为基础。因为除去Volume以外,其余数据都是Price,基于Price并不能很好的表达股票的特性,或者说并不太适用于SVM分类算法的特性。基于SVM算法的特性,股票并不是到达一个价格范围就有大概率涨或跌(不知道我这个表达大家能不
5.5.2 SCD1(缓慢渐变类型1) 通过更新维度记录直接覆盖已存在的值。不维护记录的历史。一般用于修改错误的数据,即历史数据就是错误数据,除此没有他用。
为了给操作员调用趋势提供数据来源,PKS系统里也建立了数据归档的管理系统,档案里一共记录两大类信息:历史数据和历史事件。
在业务需求中,经常需要我们在系统中能够记录历史信息,能够查看到历史变动情况,这时我们可以通过增加开始结束时间字段来记录数据的历史版本。对数据的历史记录主要分为:关系、属性历史,实体历史和变更历史。
在多机房数据迁移中,整个过程分为三个阶段:历史数据迁移阶段、redolog迁移阶段、实时复制阶段。
领取专属 10元无门槛券
手把手带您无忧上云