首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【犀牛鸟论道】深度哈希方法及其在移动视觉搜索中的应用

    1. 简介 移动视觉搜索技术是多媒体搜索领域中一个前沿的研究课题。近年来,移动设备的飞速发展,改变了互联网上图像和视频等视觉内容的产生,以及人们检索和观看的方式。移动设备的便携性和无处不在的网络接入能力使其逐渐成为主要的互联网图像和视频内容的访问和查询入口。而移动设备上丰富的传感器原件,也使得移动视觉搜索的过程更加自然、有效——用户可以直接通过拍摄图像和视频进行搜索。因此,移动视觉搜索具有巨大的市场需求和应用前景。但是,不同于传统的桌面搜索,移动视觉搜索主要面临如下挑战:1)查询图像\视频受拍摄环境干扰严重

    010

    【新智元干货】计算机视觉必读:目标跟踪、网络压缩、图像分类、人脸识别等

    【新智元导读】深度学习目前已成为发展最快、最令人兴奋的机器学习领域之一。本文以计算机视觉的重要概念为线索,介绍深度学习在计算机视觉任务中的应用,包括网络压缩、细粒度图像分类、看图说话、视觉问答、图像理解、纹理生成和风格迁移、人脸识别、图像检索、目标跟踪等。 网络压缩(network compression) 尽管深度神经网络取得了优异的性能,但巨大的计算和存储开销成为其部署在实际应用中的挑战。有研究表明,神经网络中的参数存在大量的冗余。因此,有许多工作致力于在保证准确率的同时降低网路复杂度。 低秩近似

    07

    深度学习模型压缩与加速综述

    目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。

    04
    领券