首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    武大最新妆容迁移模型 SSAT 效果超越PSGAN!上手超容易!AAAI 2022

    化妆迁移不仅是提取参考图像的化妆风格,而且是将化妆风格渲染到目标图像的语义对应位置。然而,大多数现有的方法侧重于前者而忽视后者,导致无法达到预期的结果。为了解决上述问题,我们提出了一种统一的对称语义感知变换器(SSAT)网络,该网络结合了语义对应学习来同时实现补足转移和补足移除。在SSAT中,提出了一种新的对称语义对应特征转移(SSCFT)模块和一种弱监督语义丢失模型,以便于建立精确的语义对应。在生成过程中,利用SSCFT对提取的化妆特征进行空间扭曲,实现与目标图像的语义对齐,然后将扭曲的化妆特征与未修改的化妆无关特征相结合,生成最终结果。实验表明,我们的方法获得了更加直观准确的化妆转移结果,与其他最先进的化妆转移方法相比,用户研究反映了我们方法的优越性。此外,我们还验证了该方法在表情和姿势差异、对象遮挡场景等方面的鲁棒性,并将其扩展到视频合成传输中

    02

    手机实时人工智能之「三维动作识别」:每帧只需9ms

    本文提出了一种用于三维卷积神经网络(3D CNN)的模型压缩和移动加速框架 RT3D,通过结合神经网络权重剪枝和编译器代码优化技术,使模型的端到端运行时间与目前支持 3D CNN 的移动框架相比速度提升高达 29.1 倍,准确性损失仅为 1%~1.5%。当在手机上采用 C3D 或 R(2+1)D 模型时,可以在 150ms 内完成 16 帧视频的计算。该工作由 CoCoPIE 团队:美国东北大学(Northeastern University)的王言治研究组、威廉与玛丽学院(William & Mary)的任彬研究组以及北卡罗来纳州立大学(North Carolina State University)的慎熙鹏研究组共同完成,发表于第 35 届美国人工智能协会年会(AAAI 2021)。

    02

    手机实时人工智能之「三维动作识别」:每帧只需9ms

    本文提出了一种用于三维卷积神经网络(3D CNN)的模型压缩和移动加速框架 RT3D,通过结合神经网络权重剪枝和编译器代码优化技术,使模型的端到端运行时间与目前支持 3D CNN 的移动框架相比速度提升高达 29.1 倍,准确性损失仅为 1%~1.5%。当在手机上采用 C3D 或 R(2+1)D 模型时,可以在 150ms 内完成 16 帧视频的计算。该工作由 CoCoPIE 团队:美国东北大学(Northeastern University)的王言治研究组、威廉与玛丽学院(William & Mary)的任彬研究组以及北卡罗来纳州立大学(North Carolina State University)的慎熙鹏研究组共同完成,发表于第 35 届美国人工智能协会年会(AAAI 2021)。

    03

    撒花!PyTorch 官方教程中文版正式上线,激动人心的大好事!

    什么是 PyTorch?其实 PyTorch 可以拆成两部分:Py+Torch。Py 就是 Python,Torch 是一个有大量机器学习算法支持的科学计算框架。PyTorch 的前身是Torch,但是 Torch 是基于 Lua 语言。Lua 简洁高效,但由于其过于小众,用的人不是很多,以至于很多人听说要掌握 Torch 必须新学一门语言就望而却步。考虑到 Python 在人工智能领域的领先地位,以及其生态完整性和接口易用性,几乎任何框架都不可避免地要提供 Python 接口。终于,在 2017 年,Torch 的幕后团队使用 Python 重写了 Torch 的很多内容,推出了 PyTorch,并提供了 Python 接口。此后,PyTorch 成为最流行的深度学习框架之一。

    02

    【人工智能】人工智能、机器学习和数据工程 InfoQ 趋势报告 - 2021 年 8 月

    关键要点 我们看到越来越多的公司使用深度学习算法。因此,我们将深度学习从创新者转移到了早期采用者类别。与此相关的是,深度学习存在新的挑战,例如在边缘设备上部署算法和训练非常大的模型。 尽管采用率正在缓慢增长,但现在有更多的商业机器人平台可用。我们在学术界之外看到了一些用途,但相信未来会有更多未被发现的用例。 GPU 编程仍然是一项很有前途的技术,但目前尚未得到充分利用。除了深度学习,我们相信还有更多有趣的应用。 借助 Kubernetes 等技术,在典型的计算堆栈中部署机器学习变得越来越容易。我们看到越来越

    02
    领券