首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    程序化 Options trading 浅尝辄止

    前几天我的前老板 T 跟我聊了下他正在着手筹划的 algo options trading 项目,他拜托我帮他找找合适的工程师。我仔细研读了他的计划书,感觉还有点意思。基本思路是:跟随股票的涨跌趋势,在 该股的 option 市场选择合适的合约下注。如果预测股票上涨,则购买相应的 Call option,否则购买 Put option。他目前有一个运作还不错的策略,在手工执行和测试中。未来,他希望这个项目不仅可以为自己公司的 fund 赚钱,还能逐渐转化成一个平台,简化人们做程序化交易的难度,就像 Robinhood 简化大家买卖股票的难度一样。T 会为他的初始团队提供丰厚的,有竞争力的工资,以及交易系统盈利的一部分作为奖金。

    02

    值班离岗智能识别监测系统

    值班离岗智能识别监测系统通过python+yolo网络模型视频分析技术,值班离岗智能识别监测系统能自动检测画面中人员的岗位状态(睡岗或者离岗),值班离岗智能识别监测系统一旦发现人员不在岗位的时间超出后台设置时间,立即抓拍存档提醒。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    02

    人员玩手机离岗识别检测系统

    人员玩手机离岗识别检测系统通过python+yolov5网络模型识别算法技术,人员玩手机离岗识别检测系统可以对画面中人员睡岗离岗、玩手机打电话、脱岗睡岗情况进行全天候不间断进行识别检测报警提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    02

    山西煤矿电子封条算法 yolov5

    山西煤矿电子封条通过python+yolov5网络模型AI视觉技术,python+yolov5算法模型实现对现场人员行为及设备状态全方面自动识别预警。 YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎,接下来我们介绍YOLO 系列算法。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    00
    领券