ENVI是一款专业的遥感图像处理软件,已经成为了遥感图像处理领域最为流行和实用的软件之一。它具有非常强大的图像处理、数据分析以及图像可视化等功能,同时还支持多种格式的遥感图像数据导入和导出,可以满足用户对遥感数据处理和分析的各种需求。本文将对ENVI的主要功能和使用技巧进行介绍,并结合实际案例进行详细说明。
【导读】当下,深度学习在人类社会的各项领域中大放异彩。近年来,随着人造卫星技术的发展,遥感图像的智能化处理受到了愈加广泛的关注。虽然遥感图像的研究在场景分类和目标检测方面取得了显著进展,但是,如何用精确简洁的句子来描述遥感图像的内容仍然是一个很大的问题。代码已开源。本文研究利用精确、灵活的句子描述遥感图像。首先,针对遥感图像的特点,提出了一些有意义的标注方法,以更好地描述遥感图像。其次,为了充分利用遥感图像的内容,构建了一个用于遥感图像描述问题的大规模航空影像数据集。最后,对提出的数据集进行全面的分析,以更
ENVI软件是一款专为地球观测和遥感图像处理而设计的软件,它具有独特的功能,可以满足各种不同的遥感数据分析和处理需求。下面将介绍ENVI软件的三个独特功能,并结合实际案例来说明。
ENVI软件是由美国ITT公司开发的一款基于遥感技术的图像处理软件,其具有多种高级遥感图像分析和处理功能,被广泛应用于地球科学、生态环境等领域。本论文将介绍ENVI软件的特色功能和使用方法,并以一个实例来演示ENVI软件的使用流程,包括其数据输入、遥感图像分析和处理等环节的操作步骤。最后,我们将对ENVI软件的优点和不足进行探讨。
ENVI软件是一款广泛应用于遥感图像处理的软件,本文首先介绍了ENVI软件的基本功能和应用领域,并详细讲述了如何进行ENVI软件的安装和配置;随后围绕着ENVI软件的图像预处理、分类和变换方面进行了详细介绍,并通过实际案例演示以及对结果的评估,验证了ENVI软件的实用性和强大功能。
来源:专知本文为书籍介绍,建议阅读5分钟第4版,专注于开发和实现统计驱动的、数据驱动的技术,用于遥感图像的数字图像分析。 遥感图像分析、分类和变化检测:With Algorithms for Python,第4版,专注于开发和实现统计驱动的、数据驱动的技术,用于遥感图像的数字图像分析,它的特点是算法的统计和机器学习理论与计算机代码紧密交织。它开发了用于光学/红外和合成孔径雷达(SAR)图像分析的统计方法,包括小波变换、非线性分类的核方法,以及前馈神经网络背景下的深度学习介绍。 https://www.ro
ENVI是一款专业的遥感图像分析软件,可以帮助我们对卫星遥感图像进行各种复杂的分析和处理。如果你是一名遥感工作者或者需要处理遥感图像,那么ENVI将是你的不二选择。
Segment-Geospatial包的灵感来自Aliaksandr Hancharenka[2]创作的Segment-anything-eo[3]存储库。为了方便对地理空间数据使用分段任意模型 (SAM),我开发了segment-anything-py[4] and segment-geospatial[5]Python 包,这些包现在可以在 PyPI 和 conda-forge 上使用。我的主要目标是简化利用 SAM 进行地理空间数据分析的过程,使用户能够以最少的编码工作来实现这一目标。我从segment-anything-eo[6]存储库中改编了segment-geospatial 的源代码,其原始版本归功于Aliaksandr Hancharenka。
不仅大量占用土地资源、耗费水资源,而且在维护草坪的时候大量使用化肥农药,会造成严重污染。
Envi软件是一款功能强大、广泛应用于遥感图像处理和分析领域的软件。Envi软件包含多种独特功能,这些功能可以帮助用户更好地进行遥感图像处理和分析工作。在本文中,我们将通过实际案例,举例说明Envi软件的几个独特功能,并介绍其在实际应用中的价值。
遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线,对目标进行探测和识别的技术。遥感卫星是搭载了相关遥感传感器,利用遥感器收集地球或大气目标辐射或反射 的电磁波信息,并记录下来,由信启、传输设备发送回地面,通过电磁波转换、识别得到可视图像,即我们常说的卫星图像。
探测器远距离对地球不间断观测,通过数据获取、处理和信息提取,再现地球表面的状况、现象、过程及空间分布,服务国防、社会和经济发展。
ENVI软件是一款专业的遥感图像处理软件,它可以帮助用户分析和解释从航空器、卫星和无人机等传感器获得的遥感数据。ENVI软件提供了许多独特的功能,以帮助用户更好地理解数据。在本文中,我将结合实际案例,讲解ENVI软件的几大独特功能。
ENVI 是图像处理和分析软件的行业标准。图像分析师、GIS专业人员和科学家使用它从地理空间图像中提取及时、可靠和准确的信息。
随着卫星遥感技术的不断发展,大量的遥感数据被获取并广泛应用于资源调查、环境监测、灾害评估等领域。然而,由于遥感数据复杂多样,处理方式繁琐,因此需要借助专业的遥感数据处理软件来实现数据的分析和应用。ENVI软件作为一款专业的遥感数据处理工具,具有强大的数据处理和分析能力,成为遥感数据处理领域不可替代的工具之一。本文将结合实际案例,介绍ENVI软件在遥感数据处理中的应用和操作方法,并提供实用的技巧和建议。
高尔夫球场,长期以来的高端社交地,但其存在的背后,却是对资源环境的侵袭。不仅大量占用土地资源、耗费水资源,而且在维护草坪的时候大量使用化肥农药,会造成严重污染。
随着人工智能的发展和落地应用,以地理空间大数据为基础,利用人工智能技术对遥感数据智能分析与解译成为未来发展趋势。本文以遥感数据转化过程中对观测对象的整体观测、分析解译与规律挖掘为主线,通过综合国内外文献和相关报道,梳理了该领域在遥感数据精准处理、遥感数据时空处理与分析、遥感目标要素分类识别、遥感数据关联挖掘以及遥感开源数据集和共享平台等方面的研究现状和进展。首先,针对遥感数据精准处理任务,从光学、SAR等遥感数据成像质量提升和低质图像重建两个方面对精细化处理研究进展进行了回顾,并从遥感图像的局部特征匹配和区域特征匹配两个方面对定量化提升研究进展进行了回顾。其次,针对遥感数据时空处理与分析任务,从遥感影像时间序列修复和多源遥感时空融合两个方面对其研究进展进行了回顾。再次,针对遥感目标要素分类识别任务,从典型地物要素提取和多要素并行提取两个方面对其研究进展进行了回顾。最后,针对遥感数据关联挖掘任务,从数据组织关联、专业知识图谱构建两个方面对其研究进展进行了回顾。
内容概要:土地分类是遥感影像的重要应用场景之一,本文介绍了土地分类的几个常用方法,并利用开源语义分割代码,打造了一个土地分类模型。
本文将为大家介绍来自西交利浦大学、澳大利亚科学与工业研究院矿物研究所以及利物浦大学联合提出的最新工作Samba,这是一种基于状态空间模型的遥感图像语义分割方法。该工作提出了高分辨率遥感图像的语义分割框架 Samba,性能指标均超越了CNN-based和ViT-based方法,证明了Mamba在遥感高分图像中作为新一代backbone的潜力,为遥感语义分割任务提供了 mamba-based 方法的表现基准。值得一提的是,Samba是第一个将状态空间模型(SSM)运用到遥感图像语义分割任务中的工作,代码已开源,欢迎关注。
遥感技术是一种快速发展的科技领域,具有广泛的应用前景。随着卫星技术和遥感数据采集技术的不断发展,遥感数据的处理变得越来越重要。ENVI软件作为一款专业的遥感数据处理软件,提供了丰富的功能和高效的处理能力,可以有效提高遥感数据处理效率,使处理结果更加准确可靠。本文将从软件的功能与应用入手,详细介绍ENVI软件在遥感数据处理中的应用。
几何校正的方法有多种,本次实验我采用 Image to Image 几何校正方法。
ENVI——完整的遥感图像处理平台ENVI(The Environment for Visualizing Images)是美国Exelis Visual Information Solutions公司的旗舰产品。它是由遥感领域的科学家采用交互式数据语言IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理软件。它是快速、便捷、准确地从影像中提取信息的首屈一指的软件解决方案。今天,众多的影像分析师和科学家选择ENVI来从遥感影像中提取信息。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等领域。
来源:专知本文为书籍介绍,建议阅读5分钟这本书帮助把现有工具和数据的理论和实际使用联系在一起,在遥感图像和数据上应用深度学习技术。 在当今世界,深度学习源代码和大量开放获取的地理空间图像很容易获得和访问。然而,大多数人缺少利用这一资源的教育工具。使用开源软件对遥感图像进行深度学习是第一本介绍使用免费开源工具处理真实世界遥感图像的深度学习技术的实用书籍。本书中详细介绍的方法是通用的,可以适用于遥感图像处理的许多不同应用,包括土地覆盖测绘、林业、城市研究、灾害测绘、图像恢复等。在头脑中与从业者和学生一起写,这
近日,阿里达摩院宣布发布业内首个遥感AI大模型(AIE-SEG),该模型具有强大的图像识别和分析能力,可大幅提升灾害防治、自然资源管理、农业估产等遥感应用的分析效率。本文将详细介绍这个遥感AI大模型的三大特点,以及它如何改变我们的生活和工作。
这篇论文介绍了一项新的任务 —— 指向性遥感图像分割(RRSIS),以及一种新的方法 —— 旋转多尺度交互网络(RMSIN)。RRSIS 旨在根据文本描述实现遥感图像中目标对象的像素级定位。为了解决现有数据集规模和范围的限制,本文构建了一个新的大规模 RRSIS 数据集(RRSIS-D),其中涵盖了多种空间分辨率的图像和具有尺度和角度多样性的分割目标(已公开!)。
1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。
远程遥感图像语义分割涉及将大规模遥感图像中的像素分类到不同的类别中,以增强对遥感(RS)数据的分析和解释。这种大规模的语义分割对于自动驾驶[1]、城市规划[2]、环境保护[3]以及其他许多实际应用都至关重要。
目标检测对光学遥感图像的解释至关重要,可以作为研究利用遥感的其他视觉任务的基础。然而,目前在光学遥感图像中使用的目标检测网络没有充分利用特征金字塔的输出,因此仍有改进检测的潜力。
众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。
在新型城市建设和规划中,以卫星遥感图像处理为代表的地理信息技术正在发挥非常重要的作用,通过对城市范围内的人、事件、基础设施和环境等要素全面感知、实时动态识别和快速目标提取,为智慧城市的建设提供更多有价值的信息。当前,基于人工智能的遥感图像处理技术已被广泛地应用在城市规划、违章建筑监管、工程环境监测、废弃物管理、交通治理、城市安防等场景。
在图像分割领域,MMSegmentation 是目前应用最广泛的开源算法库之一。自今年 v1.0 版本发布以来,MMSegmentation 在社区同学和核心开发者共同努力下,不断拓展到更多分割相关的视觉任务,包括遥感图像处理、医疗图像分割、深度估计和开放语义分割等。下面让我们逐一介绍这些新功能。
基于遥感数据的地表温度(LST)反演目前得到了广泛的应用,尤其是面向大尺度、长时间范围的温度数据需求,遥感方法更是可以凸显其优势。目前,基于各类遥感数据源的地表温度反演方法不断得以改进,精度亦不断提升。之前的两篇推文,也分别基于不同角度对遥感数据温度反演的方法、原理以及具体操作加以详细介绍:基于ENVI的Landsat 7地表温度(LST)大气校正方法反演与地物温度分析、基于ENVI与ERDAS的Landsat 7 ETM+单窗算法地表温度(LST)反演。
基于暗原色先验和常见的雾霾成像模型。为了消除光环伪影,使用低通高斯滤波器来细化粗略估计的大气面纱。然后,重新定义传输,以防止颜色失真的恢复图像。该算法的主要优点是速度快,同时也能取得较好的效果。
论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Foreground-Aware_Relation_Network_for_Geospatial_Object_Segmentation_in_High_Spatial_CVPR_2020_paper.pdf
遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:
文章:Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
在无监督分类中,它首先根据像素的属性将像素分组为“簇”。然后,使用土地覆盖类别对每个聚类进行分类。
本报告将介绍多模态遥感图像匹配的研究现状,结构相似性匹配模型的原理以及相关工程化应用的案例和故事,包括商业软件集成、全球测图、无人机在线配准和融合、无人机视觉导航、飞行器精确制导等方面的应用。
TOA(Top of Atmosphere)反射率是指卫星遥感图像在经过大气层后达到地面时的反射率,不考虑地表和大气对光的吸收、散射和反射等影响,因此TOA反射率是卫星遥感图像获取的最基本的数据。
春恋慕 为进一步探究基于度量学习的深度哈希图像检索方法,阅读IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium会议论文:Deep Metric and Hash-Code Learning for Content-Based Retrieval of Remote Sensing Images。论文题目翻译成中文便是基于深度度量和哈希码学习的遥感图像内容检索。
高分辨率遥感目标检测目前的研究成果主要分为两类,特定目标检测和一般目标检测。特定目标检测主要包括城市[1]、机场[2]、建筑[3]、飞机[4]、舰船[5]-[6]、车辆[7]-[8]、云[9]、海冰[10]等遥感图像中比较重要和有价值的目标。一般目标检测研究的问题主要是目标检测中面临的难题,主要面临的问题主要有:类不平衡[11]、复杂背景[12]、目标的尺度变化[13]、特殊视角[14]-[16]、小目标[17]-[18]等问题。下面分别的一般目标检测和特定目标检测进行介绍(特定目标检测当然还包含其他许多类,这里我们不能一一列出。不少文献还提出了数据集,这里我们只介绍方法。
遥感图像往往尺寸较大,无法用默认的图像浏览器加载。 GDAL是空间数据处理的开源包,支持多种数据格式的读写。 遥感图像是一种带大地坐标的栅格数据,因此,可以借用GDAL对遥感图像进行读写,本文就来记录一些相关操作。
最近已作出大量努力,提出光学遥感图像中的各种目标检测方法。然而,目前对光学遥感图像中目标检测的数据集调查和基于深度学习的方法还不够完善。此外,现有的数据集大多存在一些不足之处,如图像和目标类别数量较少,图像多样性和变异性不足。这些局限性极大地影响了基于深度学习的目标检测方法的发展。本文综述了近年来计算机视觉和地球观测领域基于深度学习的目标检测研究进展。然后,我们提出了一个大规模、公开可用的光学遥感图像目标检测基准,我们将其命名为DIOR。数据集包含23463张图像和190288个实例,覆盖20个目标类。建议的DIOR数据集1)在目标类别、目标实例数量和总图像数量上都是大规模的;2)具有大范围的对象尺寸变化,不仅在空间分辨率方面,而且在跨目标的类间和类内尺寸变化方面;3)由于成像条件、天气、季节、成像质量的不同,成像结果差异较大;4)具有较高的类间相似性和类内多样性。提出的基准可以帮助研究人员开发和验证他们的数据驱动方法。最后,我们评估了DIOR数据集中的几种最先进的方法,为未来的研究奠定了基础。
本文是关于深度学习在环境远程遥感方面的应用研究进展及面临的挑战。简要介绍由武汉大学张良培教授团队的这篇综述文章。
众所周知,人工智能是近年来最具突破性的前沿技术,尤其在计算机视觉领域的科研创新和应用落地方面取得跨越式发展。
一般情况下,遥感目标检测中,遥感图像的图片尺寸都会很大,且图像中元素极为复杂,近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】也不例外,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、小而密集、角度各异也导致常见的CV框架难以实现快速精准的目标识别。所以,如何实现遥感图像等超大尺寸图像快速识别? 目前比较成熟的卫星图像识别算法并不少,但大多依托于强大的计算资源,为了用有限的计算资源实现大尺寸图像识别,我们找到了一个
遥感,即遥远的感知。1839年,第一台相机问世之后,人们尝试通过把各种成像设备放置到更高的平台,以更加宽广的视角观察我们周边的世界。
本报告从三个方面介绍基于概率主题模型的高分辨率遥感图像非监督语义分割,首先介绍语义分割基本的内涵和完成语义分割所涉及到的一些方法,其次介绍一些常见的概率主题模型,最后介绍一些简单的应用。
领取专属 10元无门槛券
手把手带您无忧上云