AI科技评论消息,近日,kdnuggets做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了954个回答,得出结论——Python已经打败R语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI科技评论将kdnuggets上发表的总结文编译整理如下: 之前我们在kdnuggets上做了这样一个问卷调查,2016、2017两年,在分析、数据科学和机器学习的工作中,你用R语言,还是Python,或两者都用,或选择其他的语言? 通过分析954个回答,我们得出了
近日,kdnuggets 做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了 954 个回答,得出结论——Python 已经打败 R 语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI研习社将 kdnuggets 上发表的总结文编译整理如下: 之前我们在 kdnuggets 上做了这样一个问卷调查,2016、2017 两年,在分析、数据科学和机器学习的工作中,你用 R 语言,还是 Python,或两者都用,或选择其他的语言? 通过分析 954 个回答
Python是实现RPA的工具之一,且RPA要复杂的多,远不是会Python这么简单。
由于文件标题是中文,直接读取会报错,所以加了encoding编码申明。一般encoding设置成GBK、utf-8、GB2312即可满足读取需求。
时间序列数据在许多领域中都是常见的,包括金融、气象、股票市场等。通过可视化这些时间序列数据,我们可以更直观地理解数据的趋势、周期性和异常情况。Python提供了许多强大的可视化库,如Matplotlib、Seaborn和Plotly,可以帮助我们创建漂亮的时间序列图表。本文将介绍如何使用这些库来可视化时间序列数据。
众自20世纪80年代至今,随着改革开放的深入以及中国最终加入WTO,我国的对外贸易实现了跨越式的发展,中国已经成为世界第一大出口国和第二大进口国,中国经济对世界经济做出了重大贡献(点击文末“阅读原文”获取完整代码数据)。
从 2016 年开始,scRNA-tools 数据库(https://www.scrna-tools.org/)不断收集单细胞转录组数据分析软件。截止2021年,已经收集了超过 1000 个工具,从这些工具中,能够感受到单细胞转录组测序技术的可用性和兴趣的增长趋势。
本系列将介绍如何在现在工作中用两种最流行的开源平台玩转数据科学。先来看一看数据分析过程中的关键步骤 – 探索性数据分析。
插件名不需要记,只要眼熟即可,这些插件都会下载到Jenkins安装目录的plugins文件夹下。
大家好!今天我要和大家分享一个有趣的实际案例,我们将使用Python和NumPy库进行数据分析。在这个案例中,我们将探索如何分析一家咖啡馆的销售数据,以了解他们的销售趋势和最受欢迎的产品。
在本文中,我们将深入探讨数据分析的核心概念和技术,以及如何使用Python进行数据分析和可视化。我们将通过一个实际的案例研究,演示如何使用数据分析工具来解析销售趋势,从而为业务决策提供有力的支持。
时间序列是按照时间顺序排列的一系列随时间变化而变化的数据点或观测值。时间序列可以是离散的,例如每月的销售数据,也可以是连续的,例如气温和股票价格等。时间序列常用于预测和分析未来的趋势,例如经济增长、股票走势、天气变化等。
速览 题目:Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape 日期:2021.8.14 链接:https://www.biorxiv.org/content/10.1101/2021.08.13.456196v1 工具列表:https://www.scrna-tools.org/tools 图1 这个网页从2016年开始搜集scRNA的分析工具,截止到2021.8.12,搜集了1027款 从2018年
深度学习作为人工智能的一个重要分支,在过去十年中取得了显著的进展。PyTorch 和 TensorFlow 是目前最受欢迎、最强大的两个深度学习框架,它们各自拥有独特的特点和优势。
废话不多说,开始正题。正所谓,一图胜千言,经常做数据分析的都知道,数据可视化是分析报告中的关键,一张或多张优秀的图表就足以突出结论,润色报告,获得boss的肯定。
对于开发者来说,掌握什么编程语言能更容易找到机器学习或者数据科学的工作? 这是个许多人关心的问题,非常实际,也在许多论坛被翻来覆去地讨论过。非常显著的是 “Python 是大趋势”这一论调,似乎它即将在机器学习领域一统天下。那么这种说法到底有几分事实? 首先要指出的是,大多数对编程语言的讨论都比较主观。比如说,有的开发者(尤其是初学者)会因为一门语言的某个特性很契合自己的使用习惯、用着最顺手,就狂赞这门语言,而对其他语言的优点选择性失明。而这篇雷锋网编译自 IBM 开发者论坛的文章,则尽量避免了主观判断
音乐是文化的重要组成部分,而音乐流行趋势则反映了社会文化的变迁和人们审美的变化。通过分析音乐榜单,我们可以了解哪些歌曲或歌手正在受到大众的欢迎,甚至预测未来的流行趋势。Python作为一种强大的编程语言,结合其丰富的库,如Numpy,使得数据分析变得更加简单和高效。
解决痛点:“还有一个月就春节了,老板希望预测春节的订单量,该如何预测呢?”本文以预测的价值为出发点,和大家分享不同场景所适用的预测方式,并着重介绍一种容易理解且精准度较高的预测模型 - Prophet。
###############################################################
本文基于 CPV 模型, 对房地产信贷风险进行了度量与预测。我们被客户要求撰写关于CPV模型的研究报告。结果表明, 该模型在度量和预测房地产信贷违约率方面具有较好的效果。
在购物中,了解商品价格的变动对于节省成本和抓住优惠机会非常重要。本文将介绍如何使用Python爬虫建立一个某电商商品价格监控系统,帮助你持续跟踪商品价格的变动,并提供完善的方案和代码,让你能够轻松操作。
提到一线城市,大家马上会想到北上广深这四个超级大都市。除此之外,近年来新一线城市这个概念也越来越被大众所熟知。
在时间序列分析中,我们经常通过对过去的理解来预测未来。为了使这个过程成功,我们必须彻底了解我们的时间序列,找到这个时间序列中包含的信息。
随着互联网的普及和信息技术的发展,人才招聘逐渐从传统的报纸广告、面试等方式转向线上平台。招聘信息的数量快速增长,企业和求职者需要更加高效地获取、分析和理解这些信息。因此,基于Python的招聘信息可视化分析系统应运而生。
时间序列数据是按时间顺序按固定时间间隔排列的观测值的集合。每个观察对应于一个特定的时间点,并且可以以各种频率(例如,每天、每月、每年)记录数据。此类数据在许多领域都非常重要,包括金融、经济、气候科学等,因为它有助于通过分析时间序列数据来掌握潜在模式、发现趋势和发现季节性波动。
预料之内的是,Python 并没有完全「吞噬」R 语言的空间,但这项基于 954 个参与者的投票显示,Python 生态系统在今年已经超越了 R 语言,成为了数据分析、数据科学和机器学习的第一大语言。
时序图显示,该序列既包含长期趋势又包含以年为周期的季节效应 差分平稳化 对原序列做1阶差分消去趋势,再做4步差分消去季节效应的影响,差分后序列时的时序图:
大家有没这种感觉,不论甲方还是乙方,拿到一套数据库我们很难快速的知道他的配置,数据库状态以及性能状态
COVID-19对航空网络的拓扑结构和属性都有很大的影响,其影响的结果表现在网络鲁棒性、连通性和活动性的下降,以及疫情区域的航空网络状态的变化(点击文末“阅读原文”了解更多)。
近期对疫情数据进行可视化的内容比较多,今天我来用 Python 可视化申请 Plotly 对国外的疫情发展情况进行可视化,以项目实战的形式,在分析和了解国外疫情变化趋势的同时,加深大家对 Plotly 的学习应用。
开发环境 操作系统:CentOS 7.4 Python版本 :3.6 Django版本: 1.10.5 操作系统用户:oms 数据处理:pandas 前端展示:highcharts 通过上面我们已介绍了如何定时获取系统Oracle状态语句以及如何利用pandas处理成highcharts识别的格式 这节讲如何让其在前端显示 建立页面的步骤 我们还是通过这张图的步骤来说明如何建立页面 urls.py页面 oracle_performance分别为系统状态趋势的页面(以天为单位) performance分别为系
TIOBE 2021 年 01 月份的编程语言排行榜已经公布,官方的标题是:Python 成为 TIOBE 2020 年的年度编程语言。这是 Python 第四次成为 TIOBE 年度编程语言。
我们将利用6种不同的图表来揭示时间序列数据的各个方面。重点介绍Python中的plotnine库,这是一种基于图形语法(Grammar of Graphics)的绘图工具。
操作系统:CentOS 7.4 Python版本 :3.6 Django版本: 1.10.5 操作系统用户:oms 数据处理:pandas 前端展示:highcharts
选自KDnuggets等 机器之心整理 参与:李泽南、李亚洲、路旭阳 根据 KDnuggets 2017 年最新调查,Python 生态系统已经超过了 R,成为了数据分析、数据科学与机器学习的第一大语言。本文对 KDnuggets 的此项调查结果做了介绍,并补充了一篇文章讲解为何 Python 能成为数据科学领域最受欢迎的语言。 Python vs R:2017 年调查结果 近日,KDnuggets 发起了一项调查,问题是: 你在 2016 年到现在是否使用过 R 语言、Python(以及它们的封装包),或
来源:大数据挖掘DT数据分析 本文长度为1500字,建议阅读5分钟 本文为你介绍LSTM网络原理及其在流行音乐趋势预测赛题中的应用。 一、 LSTM网络原理 1.1 要点介绍 LSTM网络用来处理带“序列”(sequence)性质的数据。比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。 LSTM本身不是一个独立存在的网络结构,只是整个神经网络的一部分,即由LSTM结构取代原始网络中的隐层单元部分。 LSTM网络具有“
学生成绩分析是教育领域中非常重要的一项工作,通过对学生的成绩数据进行深入分析和可视化,可以帮助教育者更好地了解学生的学习情况,发现问题,并采取相应的措施进行教学改进。在本项目中,我们将使用Jupyter Notebook作为数据分析的工具,通过Python的强大库进行学生成绩的分析和可视化,从而为教育工作者提供有价值的参考。
通常在拿到一份数据进行相关的模型训练之前,我们需要进行数据清洗以便得到干净的数据。进一步需要找到与问题有关的特征信息,并把这些特征转换成特征矩阵的数值,这也就是机器学习实践中的重要步骤之一,特征工程。本系列文章将从数据特征的分布分析、对比分析、统计分析、贡献度分析(帕累托分析)、和特征的相关性分析来识别数据集整体上的一些重要性质。
预测一个家庭未来三个月的用电量,估计特定时期道路上的交通流量,预测一只股票在纽约证券交易所交易的价格……这些问题都有什么共同点?
每当你发现一个与时间对应的趋势时,你就会看到一个时间序列。研究金融市场表现和天气预报的事实上的选择,时间序列是最普遍的分析技术之一,因为它与时间有着不可分割的关系 - 我们总是有兴趣预测未来。
家庭理财对于每个家庭来说都至关重要,有一个清晰的财务记录对于了解自己的支出情况、制定预算以及提升理财习惯都具有重要意义。本文将介绍如何使用Python分析家庭理财的历史记录,通过对用户日常记账要求的分析,结合报表和UI展现,给出提升财务习惯的建议。
本文利用数据挖掘、自然语言处理等技术挖掘疫情相关的数据,为疫情防控提供更多有效可靠信息,采用可视化工具使对疫情数据有一个更加直观了解分析,为相关决策的制定与实施提供科学的参考依据。
整理 | 苏宓 出品 | CSDN(ID:CSDNnews) 头图 | 下载于ICphoto TIOBE 官方最新发布了 6 月的编程语言榜单,这个月榜单中又有怎样的发展趋势? Python 有望成为第一名 在本月榜单中,位居第二名的 Python 与第一名 C 语言之间的差距正在逐渐缩小,从上个月的 1.51% 缩小到了本月的 0.7%。 对此,TIOBE 官方预测,Python 即将接管 TIOBE 榜单榜首的位置。与此同时,TIOBE 索引榜单即将于下个月迎来 20 周年。在过往 20 年间,仅
Python 现在是越来越火了。 IEEE 发布的 2017 年编程语言排行榜,Python 排第一。 百度指数的搜索趋势,Python稳步上升。 (此趋势图上有个小亮点:那些搜索量骤减的极低值,猜猜
来源:专知本文为书籍推荐,建议阅读5分钟读完这本机器学习的书,你将学习图论的基本概念和所有用于构建成功的机器学习应用程序的算法和技术。 图机器学习将向您介绍一组用于处理网络数据的工具,并利用实体之间的关系的力量,可以用于预测、建模和分析任务。 第一章将介绍图论和图机器学习,以及它们的潜在使用范围。 然后,您将了解有关图表示学习的主要机器学习模型的所有您需要知道的知识:它们的目的,它们如何工作,以及它们如何在广泛的监督和非监督学习应用程序中实现。您将构建一个完整的机器学习管道,包括数据处理、模型训练和预测,
conda: data science package & environment manager
对原序列做1阶12步差分,希望提取原序列的趋势效应和季节效应,差分后的时序图如下所示:
openair 是一个R语言工具,旨在用于分析空气质量数据以及大气成分数据。起初主要用于处理空气质量数据,目前也可以用于分析大气成分数据。此工具具有如下特点:
本文共3400字,建议阅读10+分钟。 本文介绍了ARIMA的概念,并带你用Python和R训练一个数据集实现它。
领取专属 10元无门槛券
手把手带您无忧上云