作为Inference(推理)端的SDK的工具,TensorRT是可编程的处理加速器,主要是用来部署神经网络到Inference端之前,对于网络进行优化加速,来提高程序的吞吐量以及降低延迟。TensorRT理论上可以支持所有主流的深度学习框架,目前最新的版本是3.0版,可以支持Caffe 模型的直接导入,还有就是TensorFlow模型转换为UFF格式后的导入。对于其他的framework,需要用户手动的去调用一些API进行模型和参数的导入,而且在TensorRT 3.0里面还加入了对Python接口的
从有限元分析的原理上看,网格划分的越细密,求解结果的精度越高。但在实际工程的设计和应用中,网格数量的急剧增加会导致计算的时间成本大幅增加,而且当网格数量达到一定数量后,计算精度的提高并不明显。因此,在工程应用中,应选择满足计算精度的网格,要对模型不同部位的重要程度进行区分,关键部位和关键节点需要提高计算精度,可以选择细化网格,而远离约束和载荷的部位或受约束和载荷影响较小的部位可适当选择较为粗糙的网格进行离散,将有限的资源和时间用到结构的关键部位和节点。
从今起准备连续多期介绍一些常用的算法,通过不断实践“算法到程序”这一过程来学习matlab编程,久而久之就可做到熟能生巧。
先放个前辈的文章:JavaScript数字精度丢失问题总结 今天遇到了19.99*100的问题,答案不等于1999,因为在javascript中浮点数的计算是以2进制计算的。自己写了一波解决方法(不能单纯的乘Math.pow(10,N)变成整数运算完再除掉,因为乘也会有精度问题,就像题面19.99*100不等于1999。): function formatFloat(num1,num2){ var str1 = num1.toString(); var str2 = num2.toStrin
【本系列文章为山东大学郭阳教授《量子化学软件基础》课程的习题报告,涉及ORCA、BDF、Gaussian等量子化学软件的使用,在此分享给大家。】
这次只是分享一个计算AQI以及空气质量等级划分的程序,程序和示例文件以及数据都在github上。
项目使用中发现的BUG:部分ATTA出现了误报,主要还是判断的逻辑写的太复杂了以至于产生了疏漏;
机器之心专栏 机器之心编辑部 时隔四个月,ByteDance Research 与北京大学物理学院陈基课题组又一合作工作登上国际顶级刊物 Nature Communications:论文《 Towards the ground state of molecules via diffusion Monte Carlo on neural networks 》将神经网络与扩散蒙特卡洛方法结合,大幅提升神经网络方法在量子化学相关任务上的计算精度、效率以及体系规模,成为最新 SOTA。 论文链接: https:/
对于跟咱一样的普通使用者而言,往往并不关心如何去实现高精度计算,更不会去研究相应的算法。咱这里讲的高精度计算也指的是计算过程中保持数据的精度不丢失。因为内容较多,计划分成三辑进行分享。
为准确快速评定线轮廓度误差,提出了一种基于分割逼近法与MATLAB相结合的用于计算平面线轮廓度误差的新方法,该方法符合最小条件原理;它根据平面线轮廓度误差的定义……
”Pi Day is celebrated on March 14th (3/14) around the world. Pi (Greek letter “π”) is the symbol used in mathematics to represent a constant — the ratio of the circumference of a circle to its diameter — which is approximately 3.14159. Pi Day is an annual opportunity for math enthusiasts to recite the infinite digits of Pi, talk to their friends about math, and to eat pie. “ https://www.piday.org/
据富士通公司官网报道,富士通实验室开发了一种具有唯一数值表示的电路技术,可以减少计算中使用的数据位宽,并能基于深度学习训练计算的特点,根据分布统计信息来自动控制小数点位置,保持深度学习所需的计算精度。在学习过程中,通过减少计算单元的位宽和记录学习结果的存储器位宽,可以提高能效。 富士通实验室通过对采用新电路技术的深度学习硬件进行仿真,证实该技术能显著提高能效。在使用LeNet卷积神经网络进行深度学习的案例中,能效可达到32位计算单元的四倍。利用该技术,可以拓展使用深度学习的高级人工智能的应用范围,使之包括云
现代数学是建立在公理化的体系之上,可以认为是形而上学。公理化是数学的本质所在,古代中国人建立过数学的辉煌,但是却似乎并没有去思考数学的本质,而古希腊的《几何原本》是人类有史以来记载的最早数学往公理化方向努力,尽管《几何原本》中存在着公理的不完备,证明过程中依然有”想当然“的成分,比如直线上除某点之外的一点(几何原本中并没有公理支持直线上除了某点之外还可以取一点),但是往公理化运行的这个历史意义巨大。 很长时间,我都不太认为古代数学有哪些惊人,只是还知道勾股定理,杨辉三角,以及祖冲之算圆周率等。
计算机的字长取决于数据总线的宽度.字长是指计算机内部参与运算的数的位数。它决定着计算机内部寄存器、ALU和数据总线的位数,直接影响着机器的硬件规模和造价。字长直接反映了一台计算机的计算精度,为适应不同的要求及协调运算精度和硬件造价间的关系,大多数计算机均支持变字长运算,即机内可实现半字长、全字长(或单字长)和双倍字长运算。
我们研究工程问题本来就是一种近似求解,而系统仿真在其中扮演的是一个风险预测的角色,本质上属于数值计算,必然存在计算误差、截断误差、机器误差等,它不像求解算术问题1+1=2这种,必须要得到一个精确值。
这意味着分类器在42个案例中正确地预测了为男性,并错误地预测了8个男性案例为女性。它正确地预测了32例女性,18例被错误地预测为男性而不是女性。
之前发过一个梁单元有限元分析程序。在好友测试时发现一个问题,就是程序中的real型变量默认为kind=4,我们姑且称为单精度型。这样限制了程序的使用,在一些问题中出现200E10这样的大数时,程序就“
总之,通过选择合适的数值计算方法、使用高级的数值计算函数和工具箱、增加计算的精度、控制计算误差以及优化算法参数调整等方法,可以提升MATLAB中复杂数学模型优化问题的计算精度。
从旧式编程语言(例如COBOL)到现代语言(例如Java或C ++)的代码库迁移是一项艰巨的任务,需要源语言和目标语言方面的专业知识。
一个比较容易理解的概念,我们在做计算的过程中,很多时候都要做截断。不同精度的混合计算之间也会有截断,就比如一个float32单精度浮点数,符号占1位,指数占8位,尾数占23位。而一个float64双精度浮点数,符号占1位,指数占11位,尾数占52位。通常情况下,float32的有效数字约7位(按照
在这个系列的开篇,我们提到了,电子计算机的实质,是用电子线路构成的系统来解决数学问题。
前日发表了关于高斯计算精度参数的一些自己的测试和理解,意外受到了不少的关注,甚至知名博主sob也写了一个comment提出了一些相反意见[1],因此今天在这里做一些澄清。
将早期的编程语言(例如COBOL)的代码库迁移到现在的编程语言(例如Java或C++)是一项艰巨的任务,它需要源语言和目标语言方面的专业知识。COBOL如今仍在全球大型的系统中广泛使用,因此公司,政府和其他组织通常必须选择是手动翻译其代码库还是尽力维护使用这个可追溯到1950年代的程序代码。
MestReNova (MNova) 是一种强大的核磁共振数据处理软件。它可以用于处理、分析和可视化化学样品的核磁共振谱图,具有非常高的计算精度和较快的计算速度。在化学、生物、医药等领域中,其被广泛应用于研究和开发新药物、分子和材料的结构与性质等。本文将探讨 MNova 的独特竞争力以及使用方法,并且通过实际案例加以说明。
(1) 步骤2弹性单元的离散化2选择位移函数3建立单元刚度方程4建立整体平衡方 程5,求解整体平衡方程
为了更好理解本文内容,可先行阅读《量化、数据类型、上溢和下溢》中内容。这里依旧将浮点数看作是一种量化方式,将连续的不可数的集合映射到有限的集合上去。本文结合单精度浮点数讨论,双精度浮点与之类似。
Mean-Shift算法又被称为均值漂移法,是一种基于颜色空间分布的图像分割算法。该算法的输出是一个经过滤色的“分色”图像,其颜色会变得渐变,并且细纹纹理会变得平缓。
老板要是怀疑公式计算的也不对你可以选择把我的推文给你们老板看让他明白为什么他自己手算的和你的SUM结果不一样!
比较两个浮点数,一个从零开始加 11 次 0.1,另一个用 0.1 乘以 11 计算。然后用 == 比较大小。
数据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作。例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字。分析空间数据的时候,一般会把带单位(米、千米)的数据转换为“单元性数据”,这样,在算法的时候,就不需要考虑具体的单位。数据预处理不是凭空想象出来的。换句话说,预处理是达到某种目的的手段,并且没有硬性规则,一般会跟根据个人经验会形成一套预处理的模型,预处理一般是整个结果流程中的一个环节,并且预处理的结果好坏需要放到到整个流程中再进行评估。
选自Medium 作者:William Koehrsen 机器之心编译 参与:Nurhachu Null、刘晓坤 我们倾向于使用准确率,是因为熟悉它的定义,而不是因为它是评估模型的最佳工具!精度(查准率)和召回率(查全率)等指标对衡量机器学习的模型性能是非常基本的,特别是在不平衡分布数据集的案例中,在周志华教授的「西瓜书」中就特别详细地介绍了这些概念。 GitHub 地址:https://github.com/WillKoehrsen/Data-Analysis/blob/master/recall_pre
据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作。例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字。分析空间数据的时候,一般会把带单位(米、千米)的数据转换为“单元性数据”,这样,在算法的时候,就不需要考虑具体的单位。数据预处理不是凭空想象出来的。换句话说,预处理是达到某种目的的手段,并且没有硬性规则,一般会跟根据个人经验会形成一套预处理的模型,预处理一般是整个结果流程中的一个环节,并且预处理的结果好坏需要放到到整个流程中再进行评估。 本次,
在使用NumPy进行数值计算时,有时会遇到TypeError:Can't multiply sequence by non-int of type 'numpy.float64'的错误。本文将解释该错误的原因以及如何解决它。
对于多自由度机械臂, 为了研究机械臂的运动特性, 因此需要建立多自由度机械臂的半实物仿真系统以及全数值仿真系统, 而对其动力学的研究又是其中必不可少的环节之一。考虑到实时系统下, 计算机的运算速度以及数据通讯速度, 用于模拟机械臂运动的正向动力学需满足实时性、 快速性以及稳定性。 为此,有必要研究一种针对多自由度冗余机械臂的实时动力学用于模拟机械臂的实际运动情况。
正常量化计算中,我们关心的无非就是体系的能量和结构,因此了解这两者计算的精度对把握计算可能存在的误差十分重要。在G09时代,高斯部分默认的参数不够精确,而G16把默认精度提高了一部分,这导致大家容易认为G16的默认精度参数足够了。
在我们的应用软件中,涉及到物理化学计算时,只有 Frink 、F#、Modelica 少数语言变量是自带单位的,大部分语言变量仅包含数值,单位转换需要在变量进行公式计算之前完成,计算后再把结果单位转换为输出单位,单位转换主要通过若干常数实现。这带来了两个问题:
Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 环境 Python 3.6.2 jieba 0.39 数据 80
前一阵项目中,有一个需求:是查找附近的人,其实就是查询某个距离内有多少用户。实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。 那么,如何java如何计算两个经纬度之间的距离呢?有两种方法,误差都在接受范围之内。 1、基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。
在本次演讲中,NVIDIA工程师将探讨为NVIDIA Jetson开发实时神经网络应用程序的技术。工程师将介绍使用PyTorch和TensorFlow框架设计的用于分析和优化神经网络的各种工作流。
Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 环境 Python 3.6.2 jieba 0.39 数据 8000封邮件数据 正常邮件: 7063封 垃圾邮件: 7775封 测试邮件:392封(其中文件名低于1000的均为正常邮件) 流程图 1.png 此处将结果输出到result.txt文件中 各词概率保存到wordsProb.txt中 Code: def getProbWord(self, testDict,
上一篇文章我们简单了解了一些关于时间的概念,以及Linux内核中的关于时间的基本理解。而本篇则会简单说明时钟硬件,以及Linux时间子系统相关的一些数据结构。
划分单元网格是随心所欲的,所遵循的原则就是尽量提高计算精度。下面是一个规则区域划分均匀三角形网格的例子。 如图所示,将一个矩形平面区域划分成相同大小的直角三角形。X方向等分nex,Y方向等分ney,X
前一阵项目中,有一个需求:是查找附近的人,其实就是查询某个距离内有多少用户。实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。
当前CNN模型基本都是 float32,将其转换为 INT8 可以降低模型大小,提升速度,精度降低的也不太多。那么在实际中如何实现这个量化了?在网上找到了三种实践方法, 基于腾讯的NCNN, Tensorflow ,Nvidia 的 TensorRT,这里先介绍其中的一种。
MathWorks MATLAB R2023a是一种数学软件,用于算法开发、数据可视化、数据分析和数值计算等领域。在2023年,MATLAB可能会有以下的技术和特性: 1. 更强大的深度学习功能:随着深度学习在各个领域中的广泛应用,MathWorks MATLAB R2023a可能会进一步加强其深度学习框架的功能,提供更多的模型和算法,同时增强性能和效率。 2. 自适应算法:MATLAB 可能会引入自适应算法,该算法可以根据不同的输入数据和条件自动调整参数和计算方式,从而提高计算精度和效率。 3. 云服务集成:MATLAB 可能会将其计算和存储服务与公共云平台集成,使得用户可以更方便地进行大规模计算和处理。 4. 可视化增强:MATLAB 可能会增强其可视化功能,包括更多的图表类型、更高的图表性能和更灵活的交互式操作。 5. AI 功能:MATLAB可能会引入更多人工智能相关的功能,如推荐系统、自然语言处理、图像识别等,以满足不同领域的需求。
随着生活节奏的加快,「等待」已经越来越成为人们希望远离的事情。但是在深度学习领域,模型的参数、数据集的规模等等动辄就是以亿为单位,甚至更大,因此当模型训练成功之时,放一首张靓颖的「终于等到你」作为背景音乐实在是太应景了。
decimal 模块:decimal意思为十进制,这个模块提供了十进制浮点运算支持
程序计算是一个很普遍的存在,但是语言的计算精度却是一个困扰人的问题,比说说,计算0.1+0.2,0.3+0.6,不用计算机计算,你用口算当然可以计算出分别为0.3和0.9,但是计算机计算的结果却不一样
领取专属 10元无门槛券
手把手带您无忧上云