图像在我们日常生活中,可谓是随处都可见。智能手机的普及,让每个人都可以很方便的完成照片或视频的拍摄。虽然当前在手机上裁剪图片很方便,但是如果需要处理大量的图像,手工处理可能是很漫长、枯燥。让计算机去处理成千上万的的图片编辑,是最高效的方法。这回介绍一下使用Python如何完成图像裁剪。
在Python中使用opencv-python对图像进行缩放和裁剪非常简单,可以使用resize函数对图像进行缩放,使用对cv2.typing.MatLike操作,如img = cv2.imread(“Resources/shapes.png”)和img[46:119,352:495] 进行裁剪, 如有下面一副图像:
本章开始学习Python图像处理,需要同学们理解如何使用Pillow来操作图像,实现格式转换,改变大小尺寸,裁剪,滤镜处理。
本文介绍基于Python中ArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围,统一其各自行数与列数的方法。
專 欄 ❈ sunhaiyu,Python中文社区专栏作者 专栏地址: http://www.jianshu.com/u/4943cb2c6ea4 ❈ Python用Pillow(PIL)进行简单的图像操作 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值。在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R、G、B、A。整数的范围0~255。RGB全0就可以表示黑色,全255代表黑色。可以猜测(255, 0, 0, 255)代表红
在上面的例子中,我们使用open()函数打开了名为"image.jpg"的图像文件,并将其赋值给image变量。这样就可以在后续的代码中使用image对象进行图像处理。
这是Python改变生活系列的第四篇,在上文中讲了一个需求的解决办法,即用python识别条形码来获取快递单号。
我们经常会遇到一些对于多媒体文件修改的操作,像是对视频文件的操作:视频剪辑、字幕编辑、分离音频、视频音频混流等。又比如对音频文件的操作:音频剪辑,音频格式转换。再比如我们最常用的图片文件,格式转换、各个属性的编辑等。因为多媒体文件的操作众多,本文选取一些极具代表性的操作,以代码的形式实现各个操作。
有些小伙伴可能还不知道,Python的强大图片处理能力,今天西红柿来介绍一二。Python可以通过各种库(如Pillow、OpenCV、matplotlib等)进行图像的读取、修改、保存、显示等操作。Python可以对图片进行裁剪、旋转、缩放、滤镜、颜色调整等处理,还可以进行图像识别、图像分割、图像合成等高级图像处理。Python的图像处理能力不仅可以应用于计算机视觉、图像识别、机器学习等领域,也可以应用于图像处理软件开发、图像处理算法研究等方面。
最近有一个需求是将视频抽取为一个个的帧图片,使用python很方便实现,而且有多种方式;
分类:python 作者:TTyb文章发表于 2016-11-12 百度指数抓取,再用图像识别得到指数前言: 土福曾说,百度指数很难抓,在淘宝上面是20块1个关键字: 哥那么叼的人怎么会被他吓到,于是乎花了零零碎碎加起来大约2天半搞定,在此鄙视一下土福 安装的库很多: 谷歌图像识别tesseract-ocr pip3 install pillow pip3 install pyocr selenium2.45 Chrome47.0.2526.106 m or Firebox32.0.1 chromedr
缩略图方法 thumbnail(size) 的底层调用,不同的是,缩放不会改变原来数据。
OpenCV是计算机视觉中最受欢迎的库,最初由intel使用C和C ++进行开发的,现在也可以在python中使用。该库是一个跨平台的开源库,是免费使用的。OpenCV库是一个高度优化的库,主要关注实时应用程序。
完整的notebook文档:https://github.com/IBBD/IBBD.github.io/blob/master/python/python-opencv-guidelines.ipynb
本文介绍基于Python中ArcPy模块,基于矢量数据范围,对大量栅格遥感影像加以批量裁剪掩膜的方法。
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
向AI转型的程序员都关注了这个号👇👇👇 设计构思与创意 本作品以微信小程序为“个人”平台,用户可在微信小程序中录入必要的人脸等个人信息,并且能够以微信小程序为窗口查询自己的垃圾分类详情。为保证微信小程序的丰富性和人性化,用户可在小程序中通过拍照、语音、搜索等查询日常生活中常遇的生活垃圾,积累自己垃圾分类知识。在垃圾桶端,系统在用户授权情况下通过拍摄用户人脸信息匹配用户个人数据库,并记录其垃圾分类信息。此外,垃圾桶在本作品中充当“引导者”角色,用以引导用户将垃圾投掷到正确的垃圾桶中。在管理端,相关部门一方
OpenCV在OpenCV增加了DNN模块,DNN模块可以加载预先训练好的Caffe/tensorflow等模型数据,基本支持所有主流的深度学习框架训练生成与导出模型数据加载。
将转换成png后的图加载到软件中(专业软件ENVI5.3)查看结果详细信息如下图所示,成功的转换成png格式了。
译者|VK 来源|Analytics Vidhya 概述 Python中的skimage包可以快速入门图像处理 学习使用skimage进行图像处理的8个强大技巧 每个skimage的技巧都附加了Py
在进行遥感影像处理的时候,我们经常需要进行裁剪的工作,来看看如何使用GDAL工具进行这项操作吧!
定义在:tensorflow/python/ops/image_ops_impl.py.
使用OpenCV + Python构建的文档扫描仪。参阅博客文章以更好地理解:http://vipulsharma20.blogspot.on
项目地址:https://github.com/Oldpan/Pytorch-Learn/tree/master/Image-Processing
作者介绍: 叶成,数据分析师,就职于易居中国,热爱数据分析和挖掘工作,擅长使用Python倒腾数据。 在开始本位之前,这里先感谢一下本人公司的伟哥和孟哥(虽然孟哥也没帮上啥忙,但是以后有的是机会,哈哈)。 上次发了篇运用selenium自动截取百度指数并识别的文章,点这里《抓取百度指数引发的图像数字识别》,其实感觉也是有些投机取巧的意思在里面,而且正如大家所知,用selenium比较吃内存,而且因为要渲染网页,爬去效率也比较低。所以这次我们直接请求图片,通过抠图、拼接、再识别的方式来完成这个百度指数爬虫项目
利用开源的微信接口itchat,扫码登录个人微信,读取好友信息中的头像存到本地,对头像图片进行裁剪、拼接和融合,最后将生成的图片再发送至微信的文件传输助手。
上学期的网络程序设计课程(12-19week)很快就要结束了,回想起来这两个月的学习,感悟很多。在以往的学习中,常用的一些系统性的简单但易忘的知识点我往往会整理下放在博客上,可以经常进行查阅,从CSDN到博客园到8月份刚建的我的域名博客:blog.csxiaoyao.com,可以说以往的博文都是写给自己看的,只能算是个笔记,而这次的博文完全是为了能够向读者阐述我的学习经历和心得。
在这篇文章中,我们将整理计算机视觉项目中常用的Python库,如果你想进入计算机视觉领域,可以先了解下本文介绍的库,这会对你的工作很有帮助。
https://github.com/davidsandberg/facenet
本文主要介绍了如何使用Caffe中的ImageData层和DummyData层来导入图像数据以及进行图像分类。首先介绍了ImageData层的参数和使用方法,然后通过一个示例展示了如何使用ImageData层和DummyData层来将图像数据导入到Caffe中。最后讨论了如何使用Caffe中的Net训练模型来进行图像分类。
使用 EarthPy 堆叠和裁剪tif栅格数据🔜🔜若没有成功加载可视化图,点击运行可以查看 ps:隐藏代码在【代码已被隐藏】所在行,点击所在行,可以看到该行的最右角,会出现个三角形,点击查看即可
Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,写点记录笔记。
在这篇文章里我们聊一下Python实现图片裁剪的两种方式,一种利用了Pillow,还有一种利用了OpenCV。两种方式都需要简单的几行代码,这可能也就是现在Python那么流行的原因吧。
现如今我们每时每刻都在与图像打交道,而图像处理也是我们绕不开的问题,本文将会简述图像处理的基础知识以及对常见的裁剪、画布、水印、平移、旋转、缩放等处理的实现。
随着世界各地的组织都希望将其运营数字化,将物理文档转换为数字格式是非常常见的。这通常通过光学字符识别 (OCR) 完成,其中文本图像(扫描的物理文档)通过几种成熟的文本识别算法之一转换为机器文本。当在干净的背景下处理打印文本时,文档 OCR 的性能最佳,具有一致的段落和字体大小。
OpenCV是一个计算机视觉和机器学习的开源库。拥有2500+个优化算法——一套非常全面的既经典又最先进的计算机视觉和机器学习算法的集合,具备很多接口,包括Python,Java,C++和Matlab。
现在,Facebook AI开源了用于数据增强的新Python库——AugLy。
一提到特征工程,我们立即想到是表格数据。但是我们也可以得到图像数据的特征,提取图像中最重要的方面。这样做可以更容易地找到数据和目标变量之间的映射。
Pytorch实现了我们的高分辨率(例如2048x1024)逼真的视频到视频转换方法。
车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定,常用的方法有:基于形状、基于色调、基于纹理、基于文字特征等方法,近年来随着深度学习的发展也会使用目标检测的一些深度学习方法。该项目主要的流程如下图所示:
2012年iOS应用商店中发布了一个名为FuelMate的Gas跟踪应用。小伙伴们可以使用该应用程序跟踪汽油行驶里程,以及有一些有趣的功能,例如Apple Watch应用程序、vin.li集成以及基于趋势mpg的视觉效果。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 农作物的资产盘点与精准产量预测是实现农业精细化管理的核心环节。当前,我国正处于传统农业向现代农业的加速转型期,伴随着农业的转型升级,政府宏观决策、社会各界对农业数据的需求不断增加,现有农业统计信息的时效性与质量,已不足以为市场各主体的有效决策提供科学依据。在农作物资产盘点方面,传统的人工实地调查的方式速度慢、劳动强度大,数据采集质量受主观因素影响大,统计数据有较大的滞后性,亟待探索研究更高效准确度更高的农业调查统计技术。
光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。
只要接触一点编程的同学就知道,我一点也没有言过其实。对于学习Python的重要性,这里不再赘述。今天整理的教程,是给零基础的同学入门Python。
我们要先安装PIL:pip install Pillow-7.1.1-cp36-cp36m-win_amd64.whl PIL的open()函数用于创建PIL图像对象 下面开始进行测试:
论文介绍:Controllable Person Image Synthesis with Attribute-Decomposed GAN
从手机安全和监控摄像头到增强现实和摄影,计算机视觉的面部识别分支具有多种有用的应用。根据您的具体项目,可能需要在不同光照条件下的面部图像或表达不同情绪的面部。从使用面部关键点注释的视频帧到真实和伪造的脸部图像对,此列表上的数据集的大小和范围各不相同。
OpenCV是使用C++进行编写的、以BSD许可证开放源代码的、跨平台的计算机视觉库。它提供了上百种计算机视觉、机器学习、图像处理等相关算法,新版本的OpenCV支持Tensorflow、Caffe等深度学习框架。
领取专属 10元无门槛券
手把手带您无忧上云