首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python玩转统计数据:取样、计算相关性、拆分训练模型和测试

    本文使用Python建立对数据的理解。我们会分析变量的分布,捋清特征之间的关系。最后,你会学习给样本分层,并将数据集拆分成测试集与训练集。...作者:托马兹·卓巴斯(Tomasz Drabas) 如需转载请联系大数据(ID:hzdashuju) 01 生成描述性的统计数据 要完全理解任何随机变量的分布,我们需要知道其平均数与标准差、最小值与最大值...你也可以手动计算平均数、标准差及其他描述性的统计数据。...更多 描述性的统计数据也可用SciPy和NumPy计算得到。当然,比起pandas来不那么直观(data_describe_alternative.py文件)。 首先加载两个模块。...本文从MongoDB读取数据,用Python取样。 1. 准备 要实践本技巧,你需要PyMongo、pandas和NumPy。其他没有什么要准备的。 2.

    2.4K20

    mysql聚合统计数据查询缓慢优化方案

    增加索引并不能解决聚合函数统计慢的问题 优化聚合统计的方案 提前预算 建立统计数据表,以日期区分,如:20190801一天,销售了多少订单、金额等等数据。...当订单产生(支付完成后 可统计数据)时,便在统计数据表中对应的日期增加金额、数量。...来定时(比如每20分钟一次)计算总和,然后更新到统计数据表中。 优点:做的处理比较少,也无需改动退款操作等api,只需要依赖原订单表的数据,定时统计、刷新统计数据。...总结 索引并不能解决统计聚合数据慢的sql语句问题 聚合函数谨慎用 最好不用,因为我们无法预算以后的数据量需要扫描多少行数据来计算 优化方案离不开统计表,都需要按一定的周期储存运算好的统计数据

    6.8K20
    领券