首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python实现线性插值、抛物插值、样条插值、拉格朗日插值、牛顿插值、埃米尔特插值

公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~今天给大家介绍7种插值方法:线性插值、抛物插值、多项式插值、样条插值、拉格朗日插值、牛顿插值、Hermite插值,并提供Python...这个公式说明了 y 的值是由 y0 和 y1 按照它们距离 x 的相对位置加权平均得到的。扩展到多维空间:线性插值可以扩展到二维或三维空间,分别称为双线性插值和三线性插值。...在二维空间中,首先沿着一个轴进行两次线性插值,然后再沿着另一个轴进行一次线性插值,从而得到最终的插值结果。...然而,它基于线性变化的假设,对于非线性关系的数据,线性插值可能不会给出最准确的估计。在这些情况下,可能需要使用更高阶的插值方法,如多项式插值或样条插值等。...()# 显示图形plt.show()抛物插值抛物插值,也称为二次插值,是一种多项式插值方法。

3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python-plotnine 核密度空间插值可视化绘制

    从本期开始,我会陆续推出系列空间插值的推文教程,包括常见的「Kriging(克里金插值法)、Nearest Neighbor(最近邻点插值法)、Polynomial Regression(多元回归法)...、Radial Basis Function(径向基函数法)」 等多种空间插值方法,探索空间可视化带给我们的视觉魅力。...plotnine 绘制插值结果 geopandas 绘制空间地图及裁剪操作 在上期推文中Python-geopandas 中国地图绘制 中,我们使用了geopandas实现了中国地图的绘制,也相应分享了绘图数据...scipy.stats.gaussian_kde()函数进行核密度估计计算 在系列插值之前,我们先绘制核密度估计的插值图,在Python中物品们可以借用scipy.stats.gaussian_kde(...)实现空间核密度插值计算,大家也可参考scipy官网关于gaussian_kde() 的用法:高斯核密度估计参考官网。

    5.5K30

    Python-Basemap核密度空间插值可视化绘制

    上一篇的推文我们使用geopandas+plotnine 完美绘制高斯核密度插值的空间可视化结果,并提供了一个简单高效的裁剪方法,具体内容点击链接:Python-plotnine 核密度空间插值可视化绘制...Python-plotnine 核密度空间插值可视化绘制。...我们可以看出,Density_re 数据为gaussian_kde()处理后并经过reshape操作的核密度估计插值网格数据,接下来,我们就使用Basemap包对该空间插值数据进行可视化展示,我们直接给出绘制代码...总结 本期推文我们使用了Basemap绘制了空间插值的可视化效果,虽然这个包停止了维护,但其较为好用的绘图函数还是可以使用的,也别担心安装问题,还是提供不同版本的whl文件进行安装的。...下期我们使用R-ggplot+sf包实现空间插值操作,敬请期待

    2.2K20

    matlab 插值出错,MATLAB插值问题

    若F(x)为多项式,称为多项式插值(或代数插值) ;常用的代数插值方法有:拉格朗日插值,牛顿插值。...特别地: (1)已知两个节点时,得线性插值多项式: (2)已知三个节点时,得抛物插值多项式: (3)已知n+1个节点时,可得n次拉格朗日插值多项式。...关于代数插值: 可以看出,当节点较多时,多项式的次数增高,插值函数出现振荡,精度变低。因此,为了保证精度,在节点较多时,一般采用分段插值,但这样在分段点光滑性较差。...Matlab采用的多项式插值都是分段插值法。从图形还可以看出,对解析函数,插值精度高;对有奇点的函数,插值精度低。多项式插值对靠近插值区间中点的部分插值精度高,远离中点部分精度低。...Method:(1)nearest 最邻近插值,(2)linear 双线性插值,(3)cubic双三次插值,默认为双线性插值。

    1.2K40

    griddata三维空间插值「建议收藏」

    从这一篇文章,你将要学到 如何利用griddata进行三维空间插值; 及其适用范围和进阶的逐步插值 背景 最近在做一个项目,要为上海市13000+个普通住宅楼盘算基本价格,俗称基价,可以从第三方来的案例数据只能覆盖大约...3000个楼盘,余下的10000楼盘难为无米之炊,联想到地形图的思想,把上海市所有楼盘的基价看成海拔,楼盘的经纬度就是位置所在,然后会在三维空间形成一个连续平滑的三维曲面,这里利用scipy的interpolate...参考文献 1, 空间坐标和坐标所对应的属性(高程,温度等 )https://blog.csdn.net/csubai07/article/details/104344291 2, griddata用法...http://liao.cpython.org/scipytutorial11/ 6,(数值分析)各种插值法的python实现 https://blog.csdn.net/qq_20011607/article...distribute.pc_aggpage_search_result.none-task-blog-2allsobaiduend~default-1-103497930.nonecase&utm_term=python

    1.4K21

    图像插值

    ) for ax, interp_method in zip(axes.flat, methods): ax.imshow(im,interpolation=interp_method)#图像插值...ax.set_title(str(interp_method), size=20) plt.tight_layout() plt.show() 算法:图像插值是在基于模型框架下,从低分辨率图像生成高分辨率图像的过程...图像常见的插值算法可以分为两类:自适应和非自适应,如最近邻插值,双线性插值,双平方插值,双立方插值以及其他高阶方法等,应用于军事雷达图像、卫星遥感图像、天文观测图像、地质勘探数据图像、生物医学切片及显微图像等特殊图像及日常人物景物图像的处理...plt.imshow(X, cmap, norm, aspect, interpolation) X表示图像数据 cmap表示将标量数据映射到色彩图 aspect表示控制轴的纵横比 interpolation表示插值方法

    72030

    最近邻插值、双线性插值、双三次插值

    双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。...2.双线性插值 根据于待求点P最近4个点的像素值,计算出P点的像素值。...2)一般性 如上图,已知Q12,Q22,Q11,Q21,但是要插值的点为P点,这就要用双线性插值了,首先在x轴方向上,对R1和R2两个点进行插值,这个很简单,然后根据R1和R2对P点进行插值,这就是所谓的双线性插值...首先在 x 方向进行线性插值,得到: 然后在 y 方向进行线性插值,得到: 也即点P处像素值: 3.双三次插值 假设源图像A大小为m*n,缩放K倍后的目标图像B的大小为M*N,即K=M/m。...因此,a0X的横坐标权重分别为W(1+u),W(u),W(1-u),W(2-u);ay0的纵坐标权重分别为W(1+v),W(v),W(1-v),W(2-v);B(X,Y)像素值为: 对待插值的像素点(

    1.5K20

    python中griddata的外插值_利用griddata进行二维插值

    有时候会碰到这种情况: 实际问题可以抽象为 \(z = f(x, y)\) 的形式,而你只知道有限的点 \((x_i,y_i,z_i)\),你又需要局部的全数据,这时你就需要插值,一维的插值方法网上很多...,不再赘述,这里仅介绍二维的插值法 这里主要利用 scipy.interpolate 包里 griddata 函数 griddata(points, values, xi, method=’linear...xi:需要插值的空间,一般用 numpy.mgrid 函数生成后传入 method:插值方法 nearest linear cubic fill_value:无数据时填充数据 该方法返回的是和 xi 的...# 插值的目标 # 注意,这里和普通使用数组的维度、下标不一样,是因为如果可视化的话,imshow坐标轴和一般的不一样 x, y = np.mgrid[ end1:start1:step1 * 1j,...start2:end2:step2 * 1j] # grid就是插值结果,你想要的到的区间的每个点数据都在这个grid矩阵里 grid = griddata(points, values, (x, y)

    3.8K10

    numpy 插值

    一、接口 pad(array, pad_width, mode, **kwargs) 其中,第一个参数是输入数组; 第二个参数是需要pad的值,参数输入方式为:((before_1, after_1),..., after_N)),其中(before_1, after_1)表示第1轴两边缘分别填充before_1个和after_1个数值; 第三个参数是pad模式 ‘constant’——表示连续填充相同的值,...每个轴可以分别指定填充值,constant_values=(x, y)时前面用x填充,后面用y填充,缺省值填充0 ‘edge’——表示用边缘值填充 ‘linear_ramp’——表示用边缘递减的方式填充...‘maximum’——表示最大值填充 ‘mean’——表示均值填充 ‘median’——表示中位数填充 ‘minimum’——表示最小值填充 ‘reflect’——表示对称填充 ‘symmetric...’——表示对称填充 ‘wrap’——表示用原数组后面的值填充前面,前面的值填充后面 参考:https://blog.csdn.net/zenghaitao0128/article/details/78713663

    66820

    插值查找

    概要 1.插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查。 2.将这般查找中的求mid索引的公式,low表示左边索引,high表示右边索引。...key就是我们前面说的findval 3.int midIndex = low + (high - low) * (key -arr[low]) / (arr[high] - arr[low]); //插值索引...1-100的数组 已有数组arr=[1,2,3....,100]; 假如我们需要查找的值为1 使用二分查找的话,我们需要多次递归,才能1 使用插值查找算法 int mid = left + (right...对于数据量较大,关键字分部比较均匀的查找表来说,采用插值查找,速度较快。 关键子分布不均匀的情况下,该方法不一定比折半查找要好。...代码 public class InsertValueSearch { /// /// 插值查找算法(需要数组是有序的)

    86510

    ArcGIS空间插值:回归克里格与普通克里格方法

    本文介绍基于ArcMap软件,实现普通克里格、回归克里格方法的空间插值的具体操作。...结合以上相关基础知识与基本操作方法,本次我们就将通过回归克里格与普通克里格这两种方法,基于ArcMap、MATLAB、SPSS等软件,计算土壤空间属性插值的数值。...综上所述,回归克里格方法相对普通克里格方法所得计算结果更加准确,在一定程度上提高了空间插值的效果。...由空间区位分布角度观之,普通克里格方法与回归克里格方法所得插值结果整体趋势一致,呈现出土壤有机质含量自沙洋县中、西部地区向东部地区递减的变化特征。...由空间聚集分布角度观之,普通克里格方法所得插值结果整体较为平缓,多呈现块状分布,形成较类似于等高线状的局部极大值或极小值中心分布趋势;而回归克里格方法所得插值结果较之前者更加分散、零碎,空间变异较为复杂

    1.5K41

    【图像处理】详解 最近邻插值、线性插值、双线性插值、双三次插值「建议收藏」

    —— 一阶插值法 2.3 双线性插值 (Bilinear Interpolation) —— 一阶插值法 2.4 双三次插值 (Bicubic Interpolation) 三、比较与总结 四、延伸...上例即为一个简易的一维插值表示,f(x’) 就是一个插值结果。...---- 2.3 双线性插值 (Bilinear Interpolation) —— 一阶插值法 由一维的线性插值很容易拓展到二维图像的双线性插值,每次需要要经过三次一阶线性插值才能获得最终结果...: ---- 2.4 双三次插值 (Bicubic Interpolation) 又称 立方卷积插值 / 双立方插值,在数值分析中,双三次插值是二维空间中最常用的插值方法。...一方面,传统插值方法多为 线性插值 方法,如最近邻插值、双线性插值、双三次插值等。

    18.5K64

    【数值计算方法】曲线拟合与插值:Lagrange插值、Newton插值及其pythonC实现

    投影(Projection) 指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。...二、插值 Lagrange插值和Newton插值都是常见的多项式插值方法,用于通过给定的一组数据点来估计在其他点上的函数值。它们之间的主要区别在于插值多项式的构建方法。...最终的插值多项式是将所有这些基函数相加得到的。 Lagrange插值的优点是易于理解和实现,但在数据点较多时可能会导致计算复杂度较高的问题。 Newton插值使用差商的概念来构建插值多项式。...Lagrange插值公式 线性插值(n=1) 抛物插值(n=2) 范德蒙行列式 - 知乎 (zhihu.com) https://zhuanlan.zhihu.com/p/161300510 python...python实现 def newton_interpolation(x, y, xi): # 计算差分商 n = len(x) f = [[0] * n for _ in range

    36220
    领券