SciPy 是一个利用 Python 开发的科学计算库,其中包含了众多的科学计算工具。其中,SciPy 稀疏矩阵是其中一个重要的工具。相比于常规的矩阵,稀疏矩阵主要的特点是它的数据大部分都是 0 ,而非 0 的数据只有少数。这种特点可以在存储和计算上节省大量的时间和空间。SciPy 提供了多种格式的稀疏矩阵,包括 COO、CSR、CSC 等多种格式。在实际应用中,SciPy 稀疏矩阵被广泛应用于图像处理、网络分析、文本处理等领域。例如,在图像处理中,为了压缩存储图像,可以将彩色图像转化为三个单色图像,然后使用稀疏矩阵存储。另外,在网络分析中,线性代数中的稀疏矩阵常被用来表示网络拓扑结构。因此,学习和掌握 SciPy 稀疏矩阵是非常有必要的。
AiTechYun 编辑:Yining 在矩阵中,如果数值为0的元素数目远远多于非0元素的数目,并且非0元素分布无规律时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵
大家好,之前在论坛里问了不少有关线性代数计算库的问题,现在姑且来交个作业,顺便给出一些用Rust做科学计算的个人经验。结论我就直接放在开头了。
Scipy 提供了处理稀疏矩阵的工具,这对于处理大规模数据集中的稀疏数据是非常有效的。本篇博客将深入介绍 Scipy 中的稀疏矩阵功能,并通过实例演示如何应用这些工具。
具有少量非零项的矩阵(在矩阵中,若数值0的元素数目远多于非0元素的数目,并且非0元素分布没有规律时,)则称该矩阵为稀疏矩阵;相反,为稠密矩阵。非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。
上回说到,计算机存储稀疏矩阵的核心思想就是对矩阵中的非零元素的信息进行一个必要的管理。然而,我们都知道在稀疏矩阵中零元素的分布通常情况下没有什么规律,因此仅仅存储非零元素的值是不够的,我们还需要非零元素的其他信息,具体需要什么信息很容易想到:考虑到在矩阵中的每一个元素不仅有值,同时对应的信息还有矩阵的行和列。因此,将非零元素的值外加上其对应的行和列构成一个三元组(行索引,列索引,值)。然后再按照某种规律存储这些三元组。
4. save:类似于matlab中的.mat格式,python也可以保存参数数据,除了保存成csv,json,excel等之外,个人觉得matlab的.mat格式真的很强,啥都可以直接保存~~
散列表(Hash Table)是一种非常重要的数据结构,它允许我们根据键(Key)直接访问在内存存储位置的数据。这种数据结构是一种特殊类型的关联数组,对于每个键都存在一个唯一的值。它被广泛应用于各种程序设计和应用中,扮演着关键的角色。散列表的主要优点是查找速度快,因为每个元素都存储了它的键和值,所以我们可以直接访问任何元素,无论元素在数组中的位置如何。这种直接访问的特性使得散列表在处理查询操作时非常高效。因此,无论是进行数据检索、缓存操作,还是实现关联数组,散列表都是一种非常有用的工具。这种高效性使得散列表在需要快速查找和访问数据的场景中特别有用,比如在搜索引擎的索引中。散列表的基本实现涉及两个主要操作:插入(Insert)和查找(Lookup)。插入操作将一个键值对存储到散列表中,而查找操作则根据给定的键在散列表中查找相应的值。这两种操作都是 O(1) 时间复杂度,这意味着它们都能在非常短的时间内完成。这种时间复杂度在散列表与其他数据结构相比时,如二分搜索树或数组,显示出显著的优势。然而,为了保持散列表的高效性,我们必须处理冲突,即当两个或更多的键映射到同一个内存位置时。这是因为在散列表中,不同的键可能会被哈希到同一位置。这是散列表实现中的一个重要挑战。常见的冲突解决方法有开放寻址法和链地址法。开放寻址法是一种在散列表中解决冲突的方法,其中每个单元都存储一个键值对和一个额外的信息,例如,计数器或下一个元素的指针。当一个元素被插入到散列表中时,如果当前位置已经存在另一个元素,那么下一个空闲的单元将用于存储新的元素。然而,这个方法的一个缺点是,在某些情况下,可能会产生聚集效应,导致某些单元过于拥挤,而其他单元过于稀疏。这可能会降低散列表的性能。链地址法是一种更常见的解决冲突的方法,其中每个单元都存储一个链表。当一个元素被插入到散列表中时,如果当前位置已经存在另一个元素,那么新元素将被添加到链表的末尾。这种方法的一个优点是它能够处理更多的冲突,而且不会产生聚集效应。然而,它也有一个缺点,那就是它需要更多的空间来存储链表。总的来说,散列表是一种非常高效的数据结构,它能够快速地查找、插入和删除元素。然而,为了保持高效性,我们需要处理冲突并采取一些策略来优化散列表的性能。例如,我们可以使用再哈希(rehashing)技术来重新分配键,以更均匀地分布散列表中的元素,减少聚集效应。还可以使用动态数组或链表等其他数据结构来更好地处理冲突。这些优化策略可以显著提高散列表的性能,使其在各种应用中更加高效。
这意味着当我们在一个矩阵中表示用户(行)和行为(列)时,结果是一个由许多零值组成的极其稀疏的矩阵。
上回说到,无论是 COO 格式的稀疏矩阵还是 DOK 格式的稀疏矩阵,进行线性代数的矩阵运算的操作效率都非常低。至于如何优化线性代数的矩阵运算的操作效率,继续改进三元组的存储方式可能不好办了,需要换一种存储方式。至于存储方式也不需要我们去实现,SciPy 已经实现了这样的稀疏矩阵存储方式,它就是另一个板块,这个板块共有 4 种稀疏矩阵格式,分别是{BSR, CSC, CSR, LIL},这一回先介绍 LIL 格式的稀疏矩阵!
在Python编程中,经常会遇到各种 ImportError 错误。今天我们来讲解一种常见的 ImportError 错误: "from . import _arpack ImportError: DLL load failed"。
大多数机器学习从业者习惯于在将数据输入机器学习算法之前采用其数据集的矩阵表示形式。矩阵是一种理想的形式,通常用行表示数据集实例,用列表示要素。
单机环境下,如果特征较为稀疏且矩阵较大,那么就会出现内存问题,如果不上分布式 + 不用Mars/Dask/CuPy等工具,那么稀疏矩阵就是一条比较容易实现的路。
在[[11-10x数据导入为seurat对象]] 我们介绍了10x 数据导入seurat。但有时候,获得的数据并非是标准的10x 格式,比如raw 矩阵,该如何解决呢?或者,我们希望以sce 对象处理,毕竟单细胞R 中对象处理,并非seurat 一家独大。来探索一下吧。
上回说到,CSR 格式的稀疏矩阵基于程序的空间局部性原理把当前访问的内存地址以及周围的内存地址中的数据复制到高速缓存或者寄存器(如果允许的话)来对 LIL 格式的稀疏矩阵进行性能优化。但是,我们都知道,无论是 LIL 格式的稀疏矩阵还是 CSR 格式的稀疏矩阵全都把稀疏矩阵看成有序稀疏行向量组。然而,稀疏矩阵不仅可以看成是有序稀疏行向量组,还可以看成是有序稀疏列向量组。我们完全可以把稀疏矩阵看成是有序稀疏列向量组,然后模仿 LIL 格式或者是 CSR 格式对列向量组中的每一个列向量进行压缩存储。然而,模仿 LIL 格式的稀疏矩阵格式 SciPy 中并没有实现,大家可以尝试自己去模仿一下,这一点也不难。因此,这回直接介绍模仿 CSR 格式的稀疏矩阵格式——CSC 格式。
网上Seurat转scanpy的教程一抓一大堆,然鹅找遍全网都没找到一个靠谱的反向操作方法。唯一找到一个ReadH5AD用起来是这样的:
创建矩阵 import numpy as np # 创建矩阵 matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) 向量 # 行向量 vector_row = np.array([1, 2, 3]) # 列向量 vector_column = np.array([[1],
稀疏矩阵是指矩阵中大多数元素为 0 的矩阵。多数情况下,实际问题中的大规模矩阵基本上都是稀疏矩阵,而且很多稀疏矩阵的稀疏度在 90% 甚至 99% 以上。
应用: 五子棋棋盘的棋子的存档问题 思路构图: xishu.jpg SparseArray.java 运行结果 原始数组: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
计算机语言中,一般使用二维数组存储矩阵数据。在实际存储时,会发现矩阵中有许多值相同或许多值为零的数据,且分布有一定的规律,称这类型的矩阵为特殊矩阵。
问题描述:所谓稀疏矩阵是指,矩阵中大部分元素的值为0,只有少量非0元素。对于稀疏矩阵,如果存储所有元素的话,浪费空间较多,一般采取的方式是只存储非0元素及其位置。
一维数组元素的内存单元地址是连续的 二维数组可有两种存储方法:一种是以列序为主序的存储;另一种是以行序为主序的存储。 ==C语言中,数组采用的是以行序为主序的存储==
稀疏矩阵是指矩阵中大部分元素为零的矩阵。在实际应用中,很多矩阵都是稀疏的,比如网络图、文本数据等。由于矩阵中存在大量的零元素,因此稀疏矩阵的存储和计算都具有一定的特殊性。
sprs是用纯Rust实现的部分稀疏矩阵数据结构和线性代数算法 特性 结构 矩阵 三元组矩阵 稀疏向量 运算 稀疏矩阵 / 稀疏向量积 稀疏矩阵 / 稀疏矩阵积 稀疏矩阵 / 稀疏矩阵加法,减法 稀疏向量 / 稀疏向量加法,减法,点积 稀疏 / 稠密矩阵运算 算法 压缩稀疏矩阵的外部迭代器 稀疏向量迭代 稀疏向量联合非零迭代 简单的稀疏矩阵Cholesky分解 (需要选择接受 LGPL 许可) 等式右侧为稠密矩阵或向量情况下的稀疏矩阵解三角方程组 示例 矩阵创建 use sprs::TriMat; let
说明: 稀疏矩阵是机器学习中经常遇到的一种矩阵形式,特别是当矩阵行列比较多的时候,本着“节约”原则,必须要对其进行压缩。本节即演示一种常用的压缩方法,并说明其他压缩方式。
一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列。矩阵里的元素可以是数字、符号及其他的类型的元素。
转置运算是一种最简单的矩阵运算,对于一个m*n的矩阵M( 1 = < m < = 10000,1 = < n < = 10000 ),它的转置矩阵T是一个n*m的矩阵,且T( i , j )=M( j , i )。显然,一个稀疏矩阵的转置仍然是稀疏矩阵。你的任务是对给定一个m*n的稀疏矩阵( m , n < = 10000 ),求该矩阵的转置矩阵并输出。矩阵M和转置后的矩阵T如下图示例所示。
这只是开胃小菜,昨天有位即将从电子科技大学毕业的网友联系到我,说arff文件不仅仅只有上面的存储形式,还有以稀疏矩阵的格式存储的。
通常,矩阵的大部分值都是零,因此在矩阵中,将数值为0的元素的数目远远大于非0的元素的数目,并且非0元素分布无规律时,称为稀疏矩阵;反之,则称为稠密矩阵。
算法求解思路为交替迭代的进行稀疏编码和字典更新两个步骤. K-SVD在构建字典步骤中,K-SVD不仅仅将原子依次更新,对于原子对应的稀疏矩阵中行向量也依次进行了修正. 不像MOP,K-SVD不需要对矩阵求逆,而是利用SVD数学分析方法得到了一个新的原子和修正的系数向量.
在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。
如果同列/行中没有了下一个(非零)结点,那down/right就指向NULL 画个图表示一下
读书笔记(七) 这是第七部分稀疏矩阵操作 复制代码即可运行 %% 稀疏矩阵 n = 6 i = [2 6 3 4 4 5 6 1 1] j = [1 1 2 2 3 3 3 4 6
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/tkokof1/article/details/82895970
3.矩阵相乘,A,B矩阵需要满足条件为A为m*n的矩阵,B为n*p的矩阵,结果C为m*p的矩阵
上回说到 LIL 格式的稀疏矩阵的 rows 属性和 data 属性是一个其元素是动态数组的数组。其在内存中的存储方式为一个外围定长数组的元素是指向对应动态数组的基地址的指针。这一回,我们需要把这样的指针给消去。然而,仅仅是为什么要消去就是一个很复杂的问题,复杂到完全不能直接回答。因此,首先我需要针对 CPU 访问内存数据的过程外加上程序的局部性原理这两个基础的背景知识进行讲解。
有一说一,矩阵的数值算法不是那么简单的写,我这里会推荐一些学习的资源假如你愿意学的话。
在矩阵中,如果数值为0的元素数目远远多于非0元素的数目,并且非0元素分布无规律时,则称该矩阵为稀疏矩阵(sparse matrix);与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。 当一个矩阵中含有大量的0值时,可以将矩阵以稀疏矩阵的方式存储以解决资源。在R中,可以用Matrix这个包, 它可以将矩阵转化为稀疏矩阵。
最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是: e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
安妮 编译自 AWS官博 量子位 出品 | 公众号 QbitAI Apache MXNet v0.12来了。 今天凌晨,亚马逊宣布了MXNet新版本,在这个版本中,MXNet添加了两个重要新特性: 支
来源:DeepHub IMBA本文约2700字,建议阅读9分钟本文为你介绍一种既能够保存信息,又节省内存的方案:我们称之为“稀疏矩阵”。 在机器学习中,如果我们的样本数量很大,在大多数情况下,首选解决方案是减少样本量、更改算法,或者通过添加更多内存来升级机器。这些方案不仅粗暴,而且可能并不总是可行的。由于大多数机器学习算法都期望数据集(例如常用的 DataFrame)是保存在内存中的对象(因为内存读取要比磁盘读取快不止一个量级),所以升级硬件这种解决方案基本上会被否定。所以科学家们找到的一种既能够保存信息,
稀疏矩阵及其实现 这一节用到了数组的一些知识,和线代中矩阵的计算方法。建议没有基础的读者去看一下矩阵的相关知识。 和之前的博客一样,这次依然参考了严蔚敏的《数据结构(C语言版)》。 稀疏矩阵的预定义 /*--------稀疏矩阵的三元组顺序表存储表示----------*/ typedef int ElemType; #define MAXSIZE 12500 // 假设非零元个数的最大数值为12500 typedef struct { int i, j;
我发现 GSE127465_human_counts_normalized_54773x41861.mtx.gz 没有啥问题,妥妥的稀疏矩阵,但是 GSE127465_human_cell_metadata_54773x25.tsv.gz 里面很明显并不是普通的细胞信息,里面五花八门。
这里的效率高,应该是有前提的:当使用稀疏矩阵的存储格式(如CSR)时,计算效率更高。如果是普通的完整矩阵格式,实际上效率一样。
在机器学习中,如果我们的样本数量很大,在大多数情况下,首选解决方案是减少样本量、更改算法,或者通过添加更多内存来升级机器。这些方案不仅粗暴,而且可能并不总是可行的。由于大多数机器学习算法都期望数据集(例如常用的 DataFrame)是保存在内存中的对象(因为内存读取要比磁盘读取快不止一个量级),所以升级硬件这种解决方案基本上会被否定。所以科学家们找到的一种既能够保存信息,又节省内存的方案:我们称之为“稀疏矩阵”。
2018 IEEE International Conference on Cluster Computing
和稠密矩阵相比,稀疏矩阵的最大好处就是节省大量的内存空间来储存零。稀疏矩阵本质上还是矩阵,只不过多数位置是空的,那么存储所有的 0 非常浪费。稀疏矩阵的存储机制有很多种 (列出常用的五种):
导读:本文作者为我们详细讲述了 ICLR 2016 的最佳论文 Deep Compression 中介绍的神经网络压缩方法。
领取专属 10元无门槛券
手把手带您无忧上云