Strassen 算法是一种用于矩阵乘法的分治算法,它将原始的矩阵分解为较小的子矩阵,然后使用子矩阵相乘的结果来计算原始矩阵的乘积。
本文以Python 3.5及其以后的版本为主进行介绍。 运算符功能说明+算术加法,列表、元组、字符串合并与连接-算术减法,集合差集*乘法,序列重复/真除法//求整商-相反数%求余数,字符串格式化**幂运算<、<=、>、>=、==、!=(值)大小关系比较,集合的包含关系比较or逻辑或and逻辑与not逻辑非in成员测试is对象实体同一性测试(地址)|、^、&、<<、>>、~位运算符&、|、^集合交集、并集、对称差集@矩阵相乘运算符 最后一个矩阵相乘运算符用来对矩阵进行计算,需要用到python扩展库numpy
版权声明:本文为博主原创文章,欢迎转载。 https://blog.csdn.net/chengyuqiang/article/details/88796381
写着神经网络计算代码,对矩阵计算想整个清晰的展示方式,就想着用 Python 绘制下矩阵运算图。先偷懒一下,看看有没有人分享过代码?
1、该函数返回两个数组的矩阵乘积。虽然返回二维数组的正常乘积,但如果任何参数的维数大于2,则视为存在于最后两个索引的矩阵栈中并进行相应的广播。
由于矩阵相乘的时间复杂度为 O(n ^ 3),因此分治算法的时间复杂度也为 O(n ^ 3)。因此,这些方法的时间复杂度都相同,都是 O(n^3)。
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。是在学习机器学习、深度学习之前应该掌握的一个非常基本且实用的Python库。
主要是基于图深度学习的入门内容。讲述最基本的基础知识,其中包括深度学习、数学、图神经网络等相关内容。该教程由代码医生工作室出版的全部书籍混编节选而成。偏重完整的知识体系和学习指南。在实践方面不会涉及太多基础内容 (实践和经验方面的内容,请参看原书)。
AI 研习社按,日前,阿里机器翻译团队和 PAI 团队发表博文,阐述将 TVM 引入 TensorFlow,可以带来至少 13 倍的 batch 矩阵相乘(matmul)加速。雷锋网 AI 研习社将原文编译整理如下:
鉴于最近复习线性代数计算量较大,且1800答案常常忽略一些逆阵、行列式的计算答案,故用Python写出矩阵的简单计算程序,便于检查出错的步骤。
(2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。
我们在以前的文章中已经介绍了如何安装python及其python的一些特性,现在将介绍数据分析过程中经常用到的Numpy库。
到此这篇关于python如何进行矩阵运算的文章就介绍到这了,更多相关python进行矩阵运算的方法内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!
Numpy是用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。
在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。
设置一个已经给定的矩阵的行列重复次数 , 根据给定的矩阵 , 进行指定的重复 , 生成新矩阵 ;
今天是918,一个对中国人来说非常特殊的日子。这一天,有些地方可能会拉响警笛,有的地方可能会有一些纪念活动。
使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。
DFT(Discrete Fourier Transform),离散傅里叶变化,可以将离散信号变换到频域,它的公式非常简单:
1.网络架构优化:可以尝试使用更轻量级的模型架构,如MobileBERT或TinyBERT。这些架构在保持相对较小的模型尺寸的同时,仍然具有合理的性能。
话说Julia是一个神奇的语言,语法简单,速度贼快,是吹牛装X的不二神器。记得一个物理学家说过,那些旧理论之所以消失,不是因为人们改变了看法,而是持那种看法的人死光了。
构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.
矩阵乘法的Strassen 这个算法就是在矩阵乘法中采用分治法,能够有效的提高算法的效率。 先来看看咱们在高等代数中学的普通矩阵的乘法 两个矩阵相乘 上边这种普通求解方法的复杂度为: O(n3)
写这篇博客的原因是为了记录一下矩阵转置与矩阵相乘的实现代码,供日后不时之需。直接原因是今晚(2016.09.13)参加了百度2017校招的笔试(C++岗),里面就有一道矩阵转置后相乘的在线编程题。考虑到日后笔试可能会用到,特此记录,也希望能够帮助到需要的网友。
矩阵就是由多组数据按方形排列的阵列,在3D运算中一般为方阵,即M*N,且M=N,使用矩阵可使计算坐标3D坐标变得很方便快捷。下面就是一个矩阵的实例:
为了将最新的计算机视觉模型部署到移动设备中,Facebook 开发了一个用于低密度卷积的优化函数库——QNNPACK,用在最佳神经网络中。
Python语言越来越流行,作为一种解释型语言,被广大程式爱好者广泛使用,相信对于Python中的科学计算模组numpy使用的最多,那么今天就为大家简单总结一下numpy的用法,方便大家查阅。 话不多说直接上程序(直接Ctrl C&V过去就可以执行) 1.numpy基础操作 #!/usr/bin/env python #coding:utf-8 import numpy as np array = np.array([[1,2,3],[4,5,6]]) print(array) print('维度:',
快速创建数组 import numpy as np # 返回符合正态分布的数组 np.random.randn(10) array([-0.05382978, 0.57450604, 0.08319436, -1.54601915, 0.6517896 , -1.31985884, -0.68791036, 2.4913952 , 0.31322135, 0.83022095]) # 返回指定范围的一个随机数 np.random.randint(10) 9 # 创建一个随机数组
简单的矩阵乘法理论 其实大概每个人都知道向量化后进行计算的速度比循环求解计算快,可是快多少,我们还是不太清楚。那么我就想简单的说下理论再上代码(python)吧。 比如我们有矩阵 a = [1, 2] b = [3, 4] 循环相乘就是 for i in range(2): c += a[i] * b[i]
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说矩阵转置与矩阵相乘[通俗易懂],希望能够帮助大家进步!!!
而如果该函数被下面调用了,已经判断了a的长度和b的长度是相等的,所以这里只是单独的抽出来而已
实现炫酷的网页动画效果,自然少不了css3中transform的属性,此属性功能丰富且强大,比如实现元素的位移translate(x,y),缩放scale(x,y),2d旋转rotate(angle),倾斜变换skew(x-angle,y-angle)等,利用这些属性可以实现基本的动画效果,如果你要实现自定义和像素级别控制的高级动画效果,我们还需要深入了解它的另外一个属性——matrix,matrix就是矩阵的意思,听起来是不是很高级,你没听错实现更高级的效果,你需要了解“矩阵”,听到“矩阵”,是不是很惊慌,当初笔者学习线性代数时也甚是无聊,真不知道这门课有啥用,没想到这门课在计算机领域应用十分广泛,比如本文说的动画效果,还有现在火爆的人工智能,真是悔不当初,当时没有好好学习这么课程。
显然,在 Python 中,列表 * N 中的 * 运算符为重复操作,将列表中的每个元素重复 N 次。
新年第一篇技术类的文章,应该算是算法方面的文章的。看标题:快速幂和矩阵快速幂,好像挺高大上。其实并不是很难,快速幂就是快速求一个数的幂(一个数的 n 次方)。
最近我以电子版的形式出了第二本书《Python 从入门到入迷》,然后定期更新书中的内容,最先想到的便是 einsum。
本文基于阿里推荐 DIN 和 DIEN 代码,梳理了下深度学习一些概念,以及TensorFlow中的相关实现。
这系列的笔记来自著名的图形学虎书《Fundamentals of Computer Graphics》,这里我为了保证与最新的技术接轨看的是英文第五版,而没有选择第二版的中文翻译版本。不过在记笔记时多少也会参考一下中文版本
<<机器学习实战>>一书非常注重实践,对每个算法的实现和使用示例都提供了python实现。在阅读代码的过程中,发现对NumPy有一定的了解有助于理解代码。特别是NumPy中的数组和矩阵,对于初次使用者而言,有点难以理解。下面就总结一下NumPy基础知识。
深度学习是关于数据的,我们需要将数据以矩阵或更高维向量的形式表示并对它们执行操作来训练我们的深度网络。所以更好地理解矩阵运算和线性代数将帮助您对深度学习算法的工作原理有更好的理解。这就是为什么线性代数可能是深度学习中最重要的数学分支。在这篇文章中,我将尝试对线性代数做一个简单的介绍。
在相关聚类算法的实现过程中,用python语言实现,会经常出现array和matrix的混淆,这里做个总结。
机器之心报道 机器之心编辑部 DeepMind 的 Alpha 系列 AI 智能体家族又多了一个成员——AlphaTensor,这次是用来发现算法。 数千年来,算法一直在帮助数学家们进行基本运算。早在很久之前,古埃及人就发明了一种不需要乘法表就能将两个数字相乘的算法。希腊数学家欧几里得描述了一种计算最大公约数的算法,这种算法至今仍在使用。在伊斯兰的黄金时代,波斯数学家 Muhammad ibn Musa al-Khwarizmi 设计了一种求解线性方程和二次方程的新算法,这些算法都对后来的研究产生了深远的影
Scipy 提供了处理稀疏矩阵的工具,这对于处理大规模数据集中的稀疏数据是非常有效的。本篇博客将深入介绍 Scipy 中的稀疏矩阵功能,并通过实例演示如何应用这些工具。
无论是在机器学习还是深度学习中,Python 已经成为主导性的编程语言。而且,现在许多主流的深度学习框架,例如 PyTorch、TensorFlow 也都是基于 Python。这门课主要是围绕 “理论 + 实战” 同时进行的,所以本文,我将重点介绍深度学习中 Python 的必备知识点。
本函数主要让两个矩阵相乘,表达的意思就是矩阵1变换后,接着就是矩阵2变换。如公式(Out = M1 * M2),事实上在C++里,全然能够像公式那里操作,不用这个函数。
作为一个对线性代数一无所知的开发者,想快速对向量和矩阵进行一个了解和认识,那么本文就正好适合你。
3.3 常见图形绘制[*] 1.折线图 -- plt.plot 变化 2.散点图 -- plt.scatter() 分布规律 3.柱状图 -- plt.bar 统计、对比 4.直方图 -- plt.hist() 统计,分布 5.饼图 -- plt.pie() 占比 4 Numpy 4.1 Numpy优势 1.定义 开源的Python科学计算库, 用于
写这篇博客的原因是为了记录一下矩阵转置与矩阵相乘的实现代码,供日后不时之需。直接原因是今晚(2016.09.13)参加了百度 2017 校招的笔试(C++岗),里面就有一道矩阵转置后相乘的在线编程题。考虑到日后笔试可能会用到,特此记录,也希望能够帮助到需要的网友。
领取专属 10元无门槛券
手把手带您无忧上云