前天讲了用PyQt5实现数据可视化,也已经基本讲完整个项目了,没有看之前文章或者今天才关注的可以看一下历史消息或者点击这里:
Python地图可视化库有大家熟知的pyecharts、plotly、folium,还有稍低调的bokeh、basemap、geopandas,也是地图可视化不可忽视的利器。
现如今,越多越多的人使用python制作可视化图表,因为有matplotlib、seaborn等丰富的工具库可供选择,python强大的数据处理能力也为处理制表数据提供了便利。
作者:张京 来源:见文末 为什么是Python 先来聊聊为什么做数据分析一定要用Python或R语言。编程语言这么多种,Java, PHP都很成熟,但是为什么在最近热火的数据分析领域,很多人选择用Python语言? 数据分析只是一个需求,理论上来讲,任何语言都可以满足任何需求,只是麻烦与简易之别。Python这门语言诞生也相当之早,它的第一个版本是26年前发表的,曾经(或者说当前)也被用于web开发,但是就流行程度来说,远远干不过Java和PHP。东方不亮西方亮,在与Java干仗失败的这20几年时光里,
首先,第一神器是Jupyter。如果你是第一次使用,可能搞不清楚它的开发者做这么个鬼东西出来干什么,说它是博客系统也不像,说它是web服务器也不像,但它就是有用。
系列参考: python︱写markdown一样写网页,代码快速生成web工具:streamlit介绍(一) python︱写markdown一样写网页,代码快速生成web工具:streamlit 重要组件介绍(二) python︱写markdown一样写网页,代码快速生成web工具:streamlit 展示组件(三) python︱写markdown一样写网页,代码快速生成web工具:streamlit lay-out布局(四) python︱写markdown一样写网页,代码快速生成web工具:streamlit 缓存(五) python︱写markdown一样写网页,代码快速生成web工具:streamlit 数据探索案例(六) streamlit + opencv/YOLOv3 快速构建自己的图像目标检测demo网页(七)
为什么是Python 先来聊聊为什么做数据分析一定要用 Python 或 R 语言。编程语言这么多种, Java , PHP 都很成熟,但是为什么在最近热火的数据分析领域,很多人选择用 Python
测试环境: python版本 3.7.0 / 操作系统window 7 64位 / 编辑器PyCharm;
先来聊聊为什么做数据分析一定要用Python或R语言。编程语言这么多种,Java, PHP都很成熟,但是为什么在最近热火的数据分析领域,很多人选择用Python语言?
python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果
Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析。数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的工具,发展还是落后一些。 幸运的是,过去几年出现了很多新的Python数据可视化库,弥补了一些这方面的差距。matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn, pyga, folium 和 networkx,这些库有些是构建在 matplotlib 之上,还有些有其他一
**第二种:**pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ 模块名称(国内源址,很快)
Apache Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
自从 v0.3.2 开始,为了缩减项目本身的体积以及维持 pyecharts 项目的轻量化运行,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。下面介绍如何安装。
最近要绘制伦敦区地图,查阅了很多资料后最终选择使用bokeh包以及伦敦区的geojson数据绘制。 bokeh是基于python的绘图工具,可以绘制各种类型的图表,支持geojson数据的读取及绘制地图。
前段时间用C语言做了个字符版的推箱子,着实是比较简陋。正好最近用到了Python,然后想着用Python做一个图形界面的推箱子。这回可没有C那么简单,首先Python的图形界面我是没怎么用过,在网上找了一大堆教材,最后选择了tkinter,没什么特别的原因,只是因为网上说的多。
Python可谓是现在很多人正在学或者想学的一个脚本语言了,提到学习自然就少不了拿项目练手,可是一般的项目根本提不起兴趣嘛,这10个项目可是非常有趣的,不信你看看。
“ Proplot是python画图时常用的库,今天就让我们先来一起认识下它吧!”
近日,在笔者的微信群里,白垩老师问如何用 Python 画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习 Python,实为我等学习楷模。
前几天在Python白银交流群【上海新年人】问了一个地图截图的问题,问题如下:第一个问题:你们有啥办法把百度地图某个点1公里范围内截个图。第二个问题:第二是,我有四个相临的位置,4个地方能不能同时画4个1公里的大圆圈。像下图这样子,相邻地有4个圈,同时显示。
第2行创建一个地图,第3行添加海岸线,这样一个世界地图就出来了,怎么样,很简单吧。(plt.show()这行代码是用来显示图片的)
Python 环境下常用的地图绘制包是 Basemap,Cartopy,geopandas,KeplerGl,GeoViews等等,我以前常用的是Basemap,但无奈官方已经在2020年更新了,官方推荐使用Cartopy作为替代。
The world map was constructed using the R package ggplot2 with the Natural Earth dataset.
本文的可视化大屏是利用帆软report大屏模板实现,知识点大致分为【Python可视化模块plotly实现航线轨迹地图】,【帆软网页框插件】,【利用js代码定时刷新】 三部分内容构成,希望能为读者在企业实践中提供一些思路。
大多数网站都会定义一robots.txt文件,这样可以了解爬取该网站时存在哪些限制,在爬取之前检查robots.txt文件这一宝贵资源可以最小化爬虫被封禁的可能,而且还能发现和网站结构相关的线索。
python学习之路任重而道远,要想学完说容易也容易,说难也难。 很多人说python最好学了,但扪心自问,你会用python做什么了? 刚开始在大学学习c语言,写一个飞行棋的小游戏,用dos界面来做,真是出力不讨好。 地图要自己一点一点画出来,就像这样:
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化的 JavaScript 库。pyecharts 相当于是 python 版的 Echarts。
背景:利用Python分析快手APP全国大学生用户数据,发现: 哪个学校的学生最喜欢使用快手APP Android、IOS、PC三大平台用户占比份额 全国哪些城市(学校所在地)的学生使用频次最高 全国哪些省份的生源最喜欢使用快手APP … 数据:快手APP大学生用户分析数据.csv 数据结构如下(字段名都为中文):
背景:利用Python分析快手APP全国大学生用户数据,发现: 哪个学校的学生最喜欢使用快手APP Android、IOS、PC三大平台用户占比份额 全国哪些城市(学校所在地)的学生使用频次最高 全国哪些省份的生源最喜欢使用快手APP ...... 数据:快手APP大学生用户分析数据.csv 数据结构如下(字段名都为中文):
Python的强大超出你的认知,Python的功能不止于可以做网络爬虫,数据分析,Python完全可以进行后端开发,AI,Python也可进行游戏开发,本文将会详细介绍Python使用pygame模块来开发一个名为“合金弹头”的游戏
Code Interpreter是一个官方的ChatGPT插件,用于数据分析,图像转换,编辑代码等。自2023年7月6日起,它已向所有ChatGPT Plus用户提供。它为OpenAI模型提供了一个在沙箱、防火墙执行环境中工作的Python解释器。重要的是,它还可以上传和下载文件。
matplotlib是Python数据可视化库的OG。尽管它已有十多年的历史,但仍然是Python社区中使用最广泛的绘图库。它的设计与MATLAB非常相似,MATLAB是20世纪80年代开发的专有编程语言。
4、《笨办法学 Python》:这本书绝对是最简单的学习 Python 的方法,本书的 HTML 在线版是完全免费的。
最近从北京搬到了上海,开始了一段新的生活,算是人生中一个比较大的事件,于是特地用 Three.js 做了下可视化。
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
最近天气学原理需要绘制课本插图来做 翻转课堂,因此整理了课本第四章几个典型图片的画法和代码,共需要的人使用。
今天教大家用python制作北上广深——地铁线路动态图,这可能是全网最全最详细的教程了。
Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析。数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的工具,发展还是落后一些。 幸运的是,过去几年出现了很多新的Python数据可视化库,弥补了一些这方面的差距。matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn, pyga, folium 和 networkx,这些库有些是构建在 matplotlib 之上,还有些有其他
在前面的教程中,我们已经讲解了常用的二维型数据的可视化方法。但是在日常研究中,由于大气科学属于地学系统,和地球地理信息的结合十分密切,大多数时间,需要在图形中添加地理信息。作为胶水语言,在Python中,目前还在使用的地理可视化库包尚有basemap、cartopy、geopandas等,但由于basemap是基于Python 2,而2已经不再维护,这意味着basemap也要为Python 2陪葬。而geopandas是基于pandas的,属于商务图表利器,但对于气象科研,显得力不从心。现在仅介绍basemap接班者cartopy。
今天是年假的最后一天,明天大家就要回到各自的工作岗位上去,公众号从今天开始恢复更新。不知道大家假期过得怎么样,帅张提到假期多关注一些家里的变化,自己也记录了点东西,准备今天整理下跟大家分享,可是过了这一个假期,自己状态全无,不知道大家会不会跟我一样有节后焦虑症,不能很快恢复之前的工作状态,最后还是写点简单有意思的技术文分享给大家,希望大家在轻松的状态下开始工作。
上一篇的推文我们使用geopandas+plotnine 完美绘制高斯核密度插值的空间可视化结果,并提供了一个简单高效的裁剪方法,具体内容点击链接:Python-plotnine 核密度空间插值可视化绘制Python-plotnine 核密度空间插值可视化绘制。
不知道各位平常有没有过需要画地图的需求,有的时候需要在地图上标出特定位置的数据表现或者一些数值,然而怎么实现? 这里主要介绍下在R语言中绘制地图的个人琢磨的思路。绘制地图步骤有三: 你得需要绘制地图;(约等于废话) 你得有要绘制地图的地理信息,经纬度啊,边界啊等等; 你得利用2的数据在R中画出来。 以上步骤中,目前最关键的是2,一旦2的数据有了,在R中不就是把它们连起来嘛,这个对于R来说就是调戏它,就跟全民调戏小黄鸡一样。 R语言中绘制地图的思路也是由于2的获取方式不一样而分开的。 第一种思路:有一些R包
又是一年6·1儿童节,作为一个Python号,当然又要想想能用python做点什么啦——
项目名称:制作一款窗口程序的飞行棋项目 项目需求:要求至少两人对战 开发周期:两天
今天我们会介绍一下10个适用于多个学科的Python数据可视化库,其中有名气很大的也有鲜为人知的。
在查资料的过程中,我发现网上有几张十六世纪欧洲人画的地图,不知道是从哪里来的,没有背景介绍,但是地图很清晰。我觉得是难得的史料,就把它们转贴在下面。
领取专属 10元无门槛券
手把手带您无忧上云