借着二胎政策的开放与家庭消费升级的东风,母婴市场迎来了生机盎然的春天,尤其是母婴电商行业,近年来发展迅猛。用户获取和流失是一对相对概念,就好比一个水池,有进口,也有出口。我们不能只关心进口的进水速率,却忽略了出水口的出水速率。挽留一个老用户相比拉动一个新用户,在增加营业收入、产品周期维护方面都是有好处的。并且获得一个新用户的成本是留存一个老用户的5~6倍。
二元分类中有一类情况,原始数据集中的两个类出于问题性质的原因,导致其中数据点分布不平衡。举例来说,在处理用户流失(指用户在一段时间之后不再继续使用公司产品的情况)这类市场问题预测时,流失用户所占的百分比一般都会远低于留存用户的。如果说这个例子里分类是八比二的话,那么只会有 20% 的用户终止了与公司继续接触,剩下 80% 的用户则会继续使用公司产品。
在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上(点击文末“阅读原文”获取完整代码数据)。
在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上
今天教大家如何用Python写一个电信用户流失预测模型。公众号后台,回复关键字“电信”获取完整数据。
作者:Fish http://www.gamedas.com 流失分析,是游戏数据分析中一个老生常谈的问题了,一般情况下,运营人员及数据分析师都会从下载-点击-注册-创角-加载-新手教程-…-流失,这样一系列的过程的转化率来一步步研究和细分来寻找玩家流失点,进而改进产品本身,或是变化其中的运营方式。这种方式在游戏测试或者前期留存震荡期及淘汰期是有显著效果的,可以细分分析到每个环节所出现的问题和痛点。当游戏进入留存稳定期时,真正目标用户的流失用这种环节转化率,等级流失,等级停滞的方法来研究便显得十分捉急了,毕
机器学习模型的应用方法多种多样,不一而足。 例如,在客户流失预测中,当客户呼叫服务时,系统中便可以查找到一个静态统计值,但对于特定事件来说,系统则可以获得一些额外值来重新运行模型。
Spark提供了一个更快、更通用的数据处理平台。和Hadoop相比,Spark可以让你的程序在内存中运行时速度提升100倍,或者在磁盘上运行时速度提升10倍。去年,在100 TB Daytona GraySort比赛中,Spark战胜了Hadoop,它只使用了十分之一的机器,但运行速度提升了3倍。Spark也已经成为针对 PB 级别数据排序的最快的开源引擎。
目前该系列的几篇: 用户增长——CLV用户生命周期价值CLTV 笔记(一) 用户增长 - BG/NBD概率模型预测用户生命周期LTV(二) 用户增长——Cohort Analysis 留存分析(三)
即使是同一种植物,由于生长的地理环境的不同,它们的特征会有所差异。例如鸢尾花,可分为山鸢尾、杂色鸢尾、维吉尼亚鸢尾。
本文为你分享数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换。
生存模型就能很好的地解决上面的问题,生存分析(Survival analysis)是指根据历史数据对人的生存时间进行分析和推断,研究生存情况与众多影响因素间的关系。本文参考自python数据分析案例-利用生存分析Kaplan-Meier法与COX比例风险回归模型进行客户流失分析与剩余价值预测[1]。
团队需要分析一个来自在线零售商的数据。该数据集包含了78周的购买历史。该数据文件中的每条记录包括四个字段。 客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及价值。 我们被要求建立一个模型来预测消费者每周的购买频率、书籍的购买单位和购买价值。
./dataset/Discriminant-analysis-churn-dataset.csv
翻译 | AI科技大本营 参与 | 林椿眄 本课程的目的并不是要开发一门全新的机器学习或数据分析的综合入门课程,也不是想借此来取代基础教育、在线/离线课程或一些专业和书籍。我们推出本系列文章是为了让初学者快速地回顾一些基础知识,并帮助你找到进一步学习的方向。 首先用简短通俗的语言回顾数学和机器学习的基础知识,并引用了一些其他资源,这种教学的方法与一些深度学习书籍类似。 此外,课程不单单注重理论的讲解,更强调完美地平衡理论与实践。因此,每个理论主题讲解后都有一个对应的练习专题,方便初学者通过自己动手来巩
生存分析(survivalanalysis)源于生物医学,早期主要是是对生存时间进行分析,后来该方法也应用于各类商业分析,主要研究用户从一种状态转变到另一种状态所经历的时间。举个例子来说,在互联网行业,用户流失是较为常见的分析主题,生存分析法就可以运用于探究用户从进入互联网产品到流失这一过程的转变时长。这一期内容,小编会运用生存分析方法通过Python预测用户流失周期。
数据分析与挖掘是对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,整个分析过程会有以下几个步骤: 1. 确定目标 首先,要明确目标是什么?比如一个消费品公司有千万级别的会员,那如何对会员的有一个清晰的认识。哪些是活跃的会员?哪些已经流失?会员的消费周期是什么样子?不同的会员偏好的产品特征是什么?流失的会员有没有什么办法唤醒回头再次? 通过问问题,确定分析目标,明确大目标,拆解成各个小目标。 以上面的例子,其实是想做关于做会员画像,实现精准营销,这个是大目标。活跃会
最近有很多人咨询,想学习大数据,但不知道怎么入手,从哪里开始学习,需要学习哪些东西?对于一个初学者,学习大数据挖掘分析的思路逻辑是什么?本文就梳理了如何从0开始学习大数据挖掘分析,学习的步骤思路,可以
从这个问题来看,应该是对于为什么要学习数据建模不是非常清楚。我们从经验角度来做个分享,相信对于有所帮助。
Python 实现的逻辑回归后,不像 SAS 那样会自动给出模型精确度的评价,需要人为操作计算 Python 专属的 AUC (Area Under Curve),ROC 曲线与 X 轴围成的面积大小反映了模型的精度。本文将着重 AUC 值和 ROC 曲线背后的原理和 Python 代码实现。
使用工具: python、pandas、numpy、matplotlib、seaborn、sklearn库
Spark MLLib是一个用于在海量数据集上执行机器学习和相关任务的库。使用MLlib,可以对十亿个观测值进行机器学习模型的拟合,可能只需要几行代码并利用数百台机器就能达到。MLlib大大简化了模型开发过程。
分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。
分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试
想不想了解如何用Python快速搭建深度神经网络,完成数据分类任务?本文一步步为你展示这一过程,让你初步领略深度学习模型的强大和易用。
利用逻辑回归进行客户流失预警建模中涵盖了许多比较细的知识点,思维导图只展示了极小的一部分,相关知识点链接将穿插在文中。
如果你想知道用户是不是流失了呢?还有多少付费潜力呢?在未来某段时间是否会再次购买呢?BG/NBD概率模型都可以解决。但是该模型不能预测周期性消费的客户,因为它只关注T时段内的交易。
本文使用Matlab编程语言中的决策树和模糊C-均值聚类算法,帮助客户对高校教师职称、学历与评分之间的关系进行深入分析(点击文末“阅读原文”获取完整代码数据)。
自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。
AI团队正在研究工具,以帮助提高在线评论互动。一个重点领域是研究负面的在线行为,如有害评论(即粗鲁、不尊重或可能使某人离开讨论的评论)。到目前为止,他们已经构建了一系列可用模型。但是当前的模型仍然会出错,并且它们不允许用户选择他们感兴趣的有害评论类型,例如,某些平台可能可以接受亵渎,但不能接受其他类型的有害内容(查看文末了解数据获取方式)。
失去一个老用户会带来巨大的损失,大概需要公司拉新10个新用户才能予以弥补。如何预测客户即将流失,让公司采取合适的挽回措施,是每个公司都要关注的重点问题。
解决痛点:针对一款产品,如何预警用户是否可能会流失?以及可以采用哪些手段加以干预?
我给你写了一篇《如何用 Python 和 Tensorflow 2.0 神经网络分类表格数据?》,为你讲解了 Tensorflow 2.0 处理结构化数据的分类。
这些数据是根据国家和地区报告新病例的数据,但我们只想预测国家的新病例,因此我们使用 groupby 根据国家对它们进行分组
作者:kylequ 腾讯PCG数据分析工程师 |导语 指标体系是什么?GSM、OSM、HEART、AARRR、场景化(人物场)等指标模型如何搭建指标体系? 本文将以大盘dau、留存、业务渗透、时长等指标,从维度建模,指标建设规范出发来搭建星型模型,构建完备指标体系。并且介绍如何基于MECE来拆解wau,通过指数移动平均(EMA)分解dau时间序列查看dau趋势。 1 指标体系定义 指标体系是将零散单点的具有相互联系的指标,系统化的组织起来,通过单点看全局,通过全局解决单点的问题。它主要由指标和体系两
【编者按】借助大数据和机器学习做用户流失的预测分析是当前的一个应用趋势。本文由腾讯大数据团队技术人员撰写,介绍依托腾讯信鸽平台做手游用户的流失预测。文章着眼于数据、算法和系统三个方面,总结了一套手游通用的业务流失预测模型。本次流失预测的建模中采用了LR模型。 ---- 背景 随着游戏市场竞争的日趋激烈,越来越多的游戏运营服务选择借助大数据挖掘出更多更细的用户群来进行精细化,个性化运营,从而更好的抓住用户,获得更大的收益。在游戏运营中,无论是流失挽留,还是拉新,以及付费用户预测都是游戏运营的重要内容。 本文将
随着社会经济的快速发展和交通基础设施的不断完善,我国汽车市场也得到了迅速增长。 与之配套的汽车售后服务市场成为庞大的黄金市场,发展潜力惊人。 在售后服务市场中,汽车 4S 店以其品牌优势,完整和规范的服务系统以及多种多样的增值服务受到消费者的青睐。但汽车售后市场纷繁复杂, 汽车 4S 店仍 要面对竞争品牌对保有客户的激烈争夺,还有汽车维 修集团、甚至一些小型的汽车维修店对市场的蚕食。 而忠诚度越来越低的客户,也让汽车4S 店感到束手无 策。 因此客户流失预警正成为汽车4S店售后服务领域 的一个重要研究问题。
前几天飞扬博士更新了一篇算法文章,关于softmax regression的,它是logistic模型的扩展,因此要是能有些logistic regression的底子就看起来非常容易,因此在发softmax regression之前,重新复习一下logistic模型。 一句话介绍: logistic regression,它用回归模型的形式来预测某种事物的可能性,并且使用优势(Odds)来考察“某事物发生的可能性大小”。 ---- 之前介绍过的几个算法,如KNN、决策树等(在微信公众号“数说工作室”中回
背景 随着游戏市场竞争的日趋激烈,越来越多的游戏运营服务选择借助大数据挖掘出更多更细的用户群来进行精细化,个性化运营,从而更好的抓住用户,获得更大的收益。在游戏运营中,无论是流失挽留,还是拉新,以及付费用户预测都是游戏运营的重要内容。 本文将着重介绍手游用户的流失预测。对于游戏运营者,如果能够尽早的发现可能流失的用户,尽早的有针对性的对这些用户进行适当的干预,从而最大限度的延长用户在游戏中的停留时间,使得游戏运营者获得更大的收益。 本文中介绍的手游流失预测主要依托于腾讯信鸽这个平台,为这个平台提供精准定位即
本次分享的主题是关于数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换。 SMOTE算法的介绍 在实际应用中,读者可能会碰到一种比较头疼的问题,那就是分类问题中类别型的因变量可能存在严重的偏倚,即类别之间的比例严重失调。如欺诈问题中,欺诈类观测在样本集中毕竟占少数;客户流失问题中,非忠实的客户往往也是占很少一部分;在某营销活动的响应问题中,真正参与活动的客户也同样只是少部分。 如果数据存在严重的不平衡,预测得出的结论往往也是有偏的,
本文针对用户流失预测提出结合因果推断的方法CFChurn。结合反事实推理,捕获社会影响的信息从而对流失进行预测。
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
哈喽大家好,跟大家分享一个消息,我的第一本书《数据分析之道——用数据思维指导业务实战》出版了!之前也没有跟大家透露过这个消息,总想着做出来再说吧,要是一不小心没写出来呢。不过经过一年多的努力,反复修修改改,最终还是写完了这一本书。
如今DT(数据技术)时代,数据变得越来越重要,其核心应用“预测”也成为互联网行业以及产业变革的重要力量。
最近看到一篇文章:https://rudderstack.com/blog/churn-prediction-with-bigqueryml,主要是讲使用 BigQueryML 进行流失预测。首先解释下 BigQueryML 是什么,简而言之,就是使用 SQL 也可以完成机器学习模型的构建。
领取专属 10元无门槛券
手把手带您无忧上云