神经网络和深度学习(二)——从logistic回归谈神经网络基础 (原创内容,转载请注明来源,谢谢) 一、概述 之前学习机器学习的时候,已经学过logistic回归,不过由于神经网络中,一些思想会涉及到logistic,另外会拿一些神经网络用到的解决方案,以logistic来举例,更浅显易懂(例如BP算法)。 因此,这里就再次复习logistic回归及其梯度下降、代价函数等,主要是讲述和后面学习神经网络有关的内容,其他部分会快速略过。 二、logistic输出函数 logistic是解决
希望时间的流逝不仅仅丰富了我们的阅历,更重要的是通过提炼让我们得以升华,走向卓越。 1Tags 排序算法 链表 树 图 动态规划 Leetcode Python Numpy Pandas Matplotlib 数学分析 线性代数 概率论 数据预处理 机器学习 回归算法 分类算法 聚类算法 集成算法 推荐算法 自然语言处理 Kaggle Tensorflow
面向研究类的笔试题目,主要是数理统计和编程题,限时60min,一共6个题,下面给出其中的四题,更全的试题在知识星球中获取.整体难度不大,和之前发布的题目有相似的地方,好好准备!
标题: 机器学习为什么要使用概率 概率学派和贝叶斯学派 何为随机变量和何又为概率分布? 条件概率,联合概率和全概率公式: 边缘概率 独立性和条件独立性 期望、方差、协方差和相关系数 常用概率分布 贝叶
▌4.1 基于蒙特卡罗方法的理论 本章我们学习无模型的强化学习算法。 强化学习算法的精髓之一是解决无模型的马尔科夫决策问题。如图4.1所示,无模型的强化学习算法主要包括蒙特卡罗方法和时间差分方法。本
最初学习数据分析只是出于兴趣,自学了Python。最近才生出转行数据分析的想法,目前已经辞职,准备全身心地投入到学习中。
python作为数据分析被大家熟悉。scipy作为数据分析包更是被广为熟知,scipy.stats用来做统计分析非常好用。scipy.stats包含了各种连续分布和离散分布模型。这篇小文使用scipy.stats来实现几种常见的统计分布。
logistic回归:从生产到使用【下:生产篇】 上篇介绍了logistic模型的原理,如果你只是想使用它,而不需要知道它的生产过程,即拟合方法及编程实现,那么上篇就足够了。如果你想知道它的上游生产,那么请继续。 本篇着重剖析logistic模型的内部生产流程、以及每一个流程的工作原理,暴力拆解。 上下两篇的大纲如下: 【上篇:使用篇】 1. Logistic回归模型的基本形式 2. logistic回归的意义 (1)优势 (2)优势比 (3)预测意义 3. 多分类变量的logistic回归 (1)
前几天飞扬博士更新了一篇算法文章,关于softmax regression的,它是logistic模型的扩展,因此要是能有些logistic regression的底子就看起来非常容易,因此在发softmax regression之前,重新复习一下logistic模型。 一句话介绍: logistic regression,它用回归模型的形式来预测某种事物的可能性,并且使用优势(Odds)来考察“某事物发生的可能性大小”。 上篇介绍了logistic模型的原理,如果你只是想使用它,而不需要知道它的生产过程,
一、算法介绍 Logistic regression (逻辑回归)是一种非线性回归模型,特征数据可以是连续的,也可以是分类变量和哑变量,是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,主要的用途: 分类问题:如,反垃圾系统判别,通过计算被标注为垃圾邮件的概率和非垃圾邮件的概率判定; 排序问题:如,推荐系统中的排序,根据转换预估值进行排序; 预测问题:如,广告系统中CTR预估,根据CTR预估值预测广告收益; 这个世界是随机的,所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是
记得刚工作的时候,用的第一个模型就是逻辑回归。虽然从大二(大一暑假参加系里建模培训,感谢老师!)就参加了全国大学生数学建模比赛,直到研究生一直在参加数学建模,也获了大大小小一些奖。
博主前面一篇文章讲述了二维线性回归问题的求解原理和推导过程,以及使用python自己实现算法,但是那种方法只能适用于普通的二维平面问题,
01 引言 欢迎关注 算法channel ! 交流思想,分享知识,找到迈入机器学习大门的系统学习方法,并在这条道路上不断攀登,这是小编创办本公众号的初衷。 本公众号会系统地推送基础算法及机器学习/深度学习相关的全栈内容,包括但不限于:经典算法,LeetCode题目分析,机器学习数据预处理,算法原理,例子解析,部分重要算法的不调包源码实现(现已整理到Github上),并且带有实战分析,包括使用开源库和框架:Python, Numpy,Pandas,Matplotlib,Sklearn,Tensorflow等
总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。
二面大哥是临时叫来的,没看过我的简历,就对简历中的项目进行探讨,讨论了一下实现的方式。
Gamma 函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德等等,这个函数在概率论中无处不在,很多统计分布都和这个函数相关。
一个分布的随机变量可通过把服从(0,1)均匀分布的随机变量代入该分布的反函数的方法得到。标准正态分布的反函数却求不了。所以我们就要寻找其他的办法。
本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。
#写在前面 老习惯,正文之前瞎扯一通。HMM学了很久,最初是在《统计学自然语言处理》里面就学到了相关内容,并且知道HMM CRF一直都是NLP比较底层比较基础且较为有效的算法模型(虽然感觉还是挺难的),之前仅仅局限在了解前向算法和维特比算法上。也没有去写代码,只知道个大概思路。最近从52nlpHMM系列讲解再次入手,结合多篇博客、github项目以及李航的《统计学习方法》比较全面的对HMM做了一次学习,要求对自己强制输出,所以在整体公式推导没有什么大问题之后,昨天花了一天完善了代码,今天来做一个全面的讲解,为人为己。 本文还是坚持自己的风格,讲解和公式穿插进行,数学公式永远是最精炼的语言 ^_^
第三天机器学习啦!今天我们主要来一个比较“朴素”的算法,朴素贝叶斯(Naive Bayes),至于它为什么朴素我们待会儿再讲吧!
主要包括计算机科学中基本的算法与数据结构,结合算法思想和Leetcode实战,总结介绍。
作者:崔家华 编辑:赵一帆 一、前言 本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。 二、Logistic回归与梯度上升算法 Logistic回归是众多回归算法中的一员。回归算法有很多,比如:线性回归、Logistic回归、多项式回归、逐步回归、令回归、Lasso回归等。我们常用Logistic回归模型做预测。通常,Logistic回归用于二分类
对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/77723333
前到现在为止,我们通过大约1周的时间初步对机器学习是怎么一回事算是有一些基本的理解了,从最基本的线性回归入手,讨论了如何在拿到一堆数据时,先进行数据预处理(暂时未详细阐述,会在以后某个时间段详细论述)
文章目录 EM期望极大算法(expectation maximization algorithm) numpy复现 EM期望极大算法(expectation maximization algorithm) 用于含有隐变量 (hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。 EM算法的每 次迭代由两步组成: E步,求期望(expectation); M步,求极大(maximization). 在统计学中似然和概率却是两个不同的概念。概率是在特定环境下某件事情发生的可
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法,和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。 熵和条件熵 在(机器学习(9)之ID3算法详解及python实现)一文中,我们
18世纪法国科学家Buffon提出的一种计算圆周率π的方法——随机投针法,就是用一枚普普通通的针就可以计算出圆周率 ,是不是很神奇,现在带着你的疑惑和我一探究竟吧。
贝叶斯方法是一个历史悠久,有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来。因此,学习贝叶斯方法,是研究自然语言处理问题的一个非常好的切入口。
决策树(Decision Tree) 是一种数据结构,可以用来分类和回归,决策树是数据结构,但构建决策树有一系列的算法,决策树的核心之一就是利用算法构建最佳的决策树,以达到在训练数据和测试数据都表现优秀的效果。
在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本
本文主要介绍了如何使用Python和R语言进行Logistic回归分析,包括理论部分和实战案例。首先介绍了Logistic回归模型的理论知识,包括线性回归、Logistic函数、二元分布、似然函数等。然后通过一个实际案例,使用Python和R语言进行实战分析,帮助读者更好地理解和应用Logistic回归模型。
扔三枚硬币,设在投掷3次朝上后,我们已经总计投掷了X次。求投掷六次以上的概率P(x>6)和期望E(X)。
根据某面包店历史6个月的用户交易记录,通过RFM模型对用户分群,并建立模型预测用户的购买概率,实现对不同用户群不同购买概率的用户实行不同的发券策略,以此提升营销的准确率,实现ROI(收益与成本控制)的最大化。
在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法。在(1)中,我们也讨论了这种方法有的缺陷,就是OOV的问题,即对于未登录词会失效在,并简单介绍了如何基于字进行分词,本文着重阐述下如何利用HMM实现基于字的分词方法。
详细请参考:斯坦福大学NLP-cs224课程笔记1:应用深度学习到自然语言处理简介
蒙特卡洛随机方法,即统计模拟方法,是一类以概率统计理论为指导的数值计算方法。本质上是用部分估计整体,采样越多,则越近似最优解。
② 随机事件:样本空间Ω中满足一定条件的子集,用大写字母 表示 (随机事件在随机试验中可能出现也可能不出现)
刚刚结束的研究生考试中,今年的数学卷让每一个考生恨得咬牙切齿,大家不仅在心里无数次亲切的问候了出题老师,还默默的点了一首《凉凉》送给自己 这幅哀鸿遍野的场景,不仅迅速使“考研数学”登上了微博热搜榜,还
无论走到哪里,都应该记住,过去都是假的,回忆是一条没有尽头的路,一切以往的春天都不复存在,就连那最坚韧而又狂乱的爱情归根结底也不过是一种转瞬即逝的现实。——马尔克斯《百年孤独》
正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称呼,高斯分布(Gaussian distribution)。正态分布是自然科学与行为科学中的定量现象的一个方便模型。
我们平时比较多会遇到的一种情景是从一堆的数据中随机选择一个, 大多数我们使用random就够了, 但是假如我们要选取的这堆数据分别有自己的权重, 也就是他们被选择的概率是不一样的, 在这种情况下, 就需要使用加权随机来处理这些数据
本文的诞生是由于一个朋友在做科研时遇到的一个场景所引出的,场景是这样的: 已知有两组变量X和Y,每组变量都是已知其边缘分布概率密度函数的(比如一组满足正态分布,一组满足对数正态分布),且这两组变量是一定存在相关性的,如何求它们的联合分布函数或联合概率密度函数呢?
机器学习中的基本数学知识 注:本文的代码是使用Python 3写的。 机器学习中的基本数学知识 线性代数(linear algebra) 第一公式 矩阵的操作 换位(transpose) 矩阵乘法 矩阵的各种乘积 内积 外积 元素积(element-wise product/point-wise product/Hadamard product 加 低等数学 几何 范数(norm) 拉格朗日乘子法和KKT条件 微分(differential) 表示形式 法则 常见导数公式 统计学/概率论 信息论
專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目管理:PMO,变革,生产转移,清算和资产处理。MBA, PMI-PBA, PMP。❈ 我在学习机器学习算法和玩Kaggle 比赛时候,不断地发现需要重新回顾概率、统计、矩阵、微积分等知识。如果按照机器学习的标准衡量自我水平,这些知识都需要重新梳理一遍。 网上或许有各种各样知识片断,却较难找到一本书将概率,统计、矩阵、微
Abstract:最近课业内的任务不是很多,又邻近暑假了,就在网上搜了一些有关于机器学习和深度学习的课程进行学习。网上的资料非常繁多,很难甄别,我也是货比三家进行学习。这是这个系列的第一个笔记,是关于贝叶斯和MCMC一些数学原理的讲解和代码的实现,希望能够深入浅出,叙述的容易让人理解。…
作者 | 徐炎琨 来源 | 知乎问答 整理 | AI科技大本营 这是这个笔记,是关于贝叶斯和MCMC一些数学原理的讲解和代码的实现,希望能够深入浅出,叙述的容易让人理解。… ▌浅谈贝叶斯 不论是学习概率统计还是机器学习的过程中,贝叶斯总是是绕不过去的一道坎,大部分人在学习的时候都是在强行地背公式和套用方法,没有真正去理解其牛逼的思想内涵。我看了一下 Chalmers 一些涉及到贝叶斯统计的课程,content 里的第一条都是 Philosophy of Bayesian statistics。
领取专属 10元无门槛券
手把手带您无忧上云