本文主要介绍了如何学习人工智能相关知识,包括入门基础、进阶和高阶知识。首先,介绍了计算机基础、编程语言和数学基础。其次,介绍了机器学习、深度学习以及深度学习框架。最后,阐述了机器学习、强化学习、迁移学习等方面的知识。
所谓万丈高楼平地起,搞数据科学、机器学习或深度学习,一开始至少得学会跟计算机打交道吧,怎么跟计算机打交道呢?编程。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法,和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。 熵和条件熵 在(机器学习(9)之ID3算法详解及python实现)一文中,我们
这两年,计算机视觉似乎火了起来,计算机视觉的黄金时代真的到来了吗?生物医学、机械自动化、土木建筑等好多专业的学生都开始研究其在各自领域的应用,一个视觉交流群里三分之一以上都不是计算机相关专业的。当然,我也是其中一员。
《Convex Optimization(凸优化)》从理论、应用和算法三个方面系统地介绍凸优化内容。
向量x称之为优化向量,f0是目标函数,fi是约束函数,问题在于满足约束条件下寻找最优解
我们可以简单的将深度神经网络的模块,分成以下的三个部分,即深度神经网络上游的基于生成器的 输入模块,深度神经网络本身,以及深度神经网络下游基于批量梯度下降算法的 凸优化模块:
本文结构: 凸优化有什么用? 什么是凸优化? ---- 凸优化有什么用? 鉴于本文中公式比较多,先把凸优化的意义写出来吧,就会对它更有兴趣。 我们知道在机器学习中,要做的核心工作之一就是根据实际问题定义一个目标函数,然后找到它的最优解。 不过求解这种优化的问题其实是很难的,但是有一类问题叫做凸优化问题,我们就可以比较有效的找到全局最优解。 例如,SVM 本身就是把一个分类问题抽象为凸优化问题,利用凸优化的各种工具(如Lagrange对偶)进行求解和解释。深度学习中关键的算法反向传播(Back Propaga
选自arXiv 优化技术在科技领域应用广泛,小到航班表,大到医疗、物理、人工智能的发展,皆可看到其身影,机器学习当然也不例外,且在实践中经历了一个从凸优化到非凸优化的转变,这是因为后者能更好地捕捉问题结构。本文梳理了这种转变的过程和历史,以及从机器学习和信号处理应用中习得的经验。本文将带领读者简要了解几种广泛使用的非凸优化技术及应用,介绍该领域的丰富文献,使读者了解分析非凸问题的简单步骤所需的基础知识。更多详细内容请查看原论文。 优化作为一种研究领域在科技中有很多应用。随着数字计算机的发展和算力的大幅增长,
https://github.com/jakevdp/PythonDataScienceHandbook
选自arXiv 机器之心编译 优化技术在科技领域应用广泛,小到航班表,大到医疗、物理、人工智能的发展,皆可看到其身影,机器学习当然也不例外,且在实践中经历了一个从凸优化到非凸优化的转变,这是因为后者能更好地捕捉问题结构。本文梳理了这种转变的过程和历史,以及从机器学习和信号处理应用中习得的经验。本文将带领读者简要了解几种广泛使用的非凸优化技术及应用,介绍该领域的丰富文献,使读者了解分析非凸问题的简单步骤所需的基础知识。更多详细内容请查看原论文。 优化作为一种研究领域在科技中有很多应用。随着数字计算机的发展和算
其中, 是 凸集是指对集合中的任意两点 ,有 ,即任意两点的连线段都在集合内,直观上就是集合不会像下图那样有“凹下去”的部分。至于闭合的凸集,则涉及到闭集的定义,而闭集的定义又基于开集,比较抽象,不赘述,这里可以简单地认为闭合的凸集是指包含有所有边界点的凸集。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。尽管凸优化的条件比较苛刻,但仍然在机器学习领域有十分广泛的应用。
本文整理12册容易被忽略的人工智能书籍,有经典入门内容、有理论加深内容,现在大家都很关注怎样能够更快做出结果,往往忽略了一些基础内容,这些书籍,希望各位“闲暇”时,可以“阅读”一番。
转载说明:CSDN的博主poson在他的博文《机器学习的最优化问题》中指出“机器学习中的大多数问题可以归结为最优化问题”。我对机器学习的各种方法了解得不够全面,本文试图从凸优化的角度说起,简单介绍其基本理论和在机器学习算法中的应用。
摘要总结:本文主要讲解了凸优化问题的求解方法以及其在实际应用中的作用,凸优化问题在计算机科学和运筹学等领域具有广泛的应用。
机器学习中几乎所有的问题到最后都能归结到一个优化问题,即求解损失函数的最小值。我们知道,梯度下降法和牛顿法都是通过逼近的方式到达极值点,如何使损失函数的极值点成为它的最值点就是凸函数和凸优化关注的内容。
这是一个全新的系列,我们会给大家介绍凸优化(Convex Optimization)相关的内容。
来源:专知本文为书籍,建议阅读5分钟本书为一阶凸优化方法提供了强大的更高层次的见解。 我们写这本书是为了分享一个优雅的视角,它为一阶凸优化方法提供了强大的更高层次的见解。一阶凸优化方法更有效地解决大规模优化问题的研究始于20世纪60年代和70年代,但当时该领域的重点是二阶方法,后者更有效地解决较小的问题。21世纪初,随着计算能力的提高和大数据的可用性,一阶优化方法成为主流。在这个现代时代,作者进入优化领域,发现(但没有发明)上述观点,我们希望通过本书分享它。 https://large-scale-boo
”凸优化“ 是指一种比较特殊的优化,是指求取最小值的目标函数为凸函数的一类优化问题。其中,目标函数为凸函数且定义域为凸集的优化问题称为无约束凸优化问题。而目标函数和不等式约束函数均为凸函数,等式约束函
凸优化(convex optimization)是最优化问题中非常重要的一类,也是被研究的很透彻的一类。对于机器学习来说,如果要优化的问题被证明是凸优化问题,则说明此问题可以被比较好的解决。在本文中,SIGAI将为大家深入浅出的介绍凸优化的概念以及在机器学习中的应用。
\[ \begin{align} &minimize \, f_0(x) \\ &subject \, to \, f_i(x)≤b_i, \, i=1,...,m \tag{1.1} \end{align} \]
凸优化理论广泛用于机器学习中,也是数学规划领域很重要的一个分支,当然也是很复杂的。本文总结一下我获取的资料和个人在一些难点上的理解。
导语:本文先介绍了凸优化的满足条件,然后用一个通用模型详细地推导出原始问题,再解释了为什么要引入对偶问题,以及原始问题和对偶问题的关系,之后推导了两者等价的条件,最后以SVM最大间隔问题的求解来说明其可行性。
今年的主要研究方向是两个:一是强化学习及其在游戏上的应用,二是深度学习理论分析的探索。 今年理论方向我们做了一些文章,主要内容是分析浅层网络梯度下降非凸优化的收敛性质。首先是上半年我自己ICML的这篇(https://arxiv.org/abs/1703.00560),分析了带一层隐层的网络,且输入为高斯分布时的收敛性情况。这篇文章,尤其是去年在ICLR 17 workshop上发表的不完全版,可以算是此方向的头一篇,给分析神经网络的非凸问题提供了一个思路。之后CMU的杜少雷过来实习,又出了两篇拓展性的文章
作者:田渊栋 【新智元导读】FAIR研究科学家田渊栋今天在知乎发表他的2017年工作总结。今年的主要研究方向是两个:一是强化学习及其在游戏上的应用,二是深度学习理论分析的探索,文章介绍了这两个方向的研究,在ICML、NIPS等发表的工作。 今年的主要研究方向是两个:一是强化学习及其在游戏上的应用,二是深度学习理论分析的探索。 今年理论方向我们做了一些文章,主要内容是分析浅层网络梯度下降非凸优化的收敛性质。首先是上半年我自己 ICML 的这篇[1],分析了带一层隐层的网络,且输入为高斯分布时的收敛性情况。这篇
这一节我们会介绍目前非常流行的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM),这个方法的应用非常广泛,所以课件上举了非常多的例子来说明它的应用,我们这里自然也不会吝啬于此。如果有空的话,我们还会继续介绍Frank-Wolfe算法,这也是一个设计上比较有意思的优化算法。
上一节笔记:凸优化(B)——再看交替方向乘子法(ADMM),Frank-Wolfe方法
Tom Mitchell将机器学习任务定义为任务Task、训练过程Training Experience和模型性能Performance三个部分。 以分单引擎为例,我们可以将提高分单效率这个机器学习任务抽象地描述为:
本文介绍了如何在深度学习项目中使用 TensorFlow.js,通过实例演示了如何使用 TensorFlow.js 在浏览器中运行深度学习模型,并介绍了在服务器端使用 TensorFlow.js 部署模型的方法。
学习栗 编译自 GitHub 量子位 出品 | 公众号 QbitAI 你的暑假可能还没到,但机器学习的假期书单已经提前出炉了。 想到假期还可以好好学习,是不是一下子就有动力复习了呢? 必备解暑神器
注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。这部分本应该加上实验的部分,实验的部分在后期有时间再补上。 可扩展机器学习系列主要包括以下几个部分: 概述 - Spark分布式处理 - 线性回归(linear Regression) - 梯度下降(Gradient Descent)
原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。
大数据文摘作品 作者:小鱼、土豆 《深度学习》(花书)作者Ian Goodfellow今早连发了10条推特,细数了他最喜欢的两个机器学习“黑魔法”。他在著名的GAN论文中使用这两个小窍门推导了公式。 最后,他还不忘操心大家的学习,推荐了一本关于凸优化的书。当然,更详尽的操作还是要去看Goodfellow本人的《深度学习》。文摘菌给大家搭配了斯坦福的一门MOOC,一起学习风味更佳~拉至文末查看喔~ Goodfellow称,这是关于机器学习,他最喜欢的两个快速理解理论推导的“黑魔法”。 以下是Ian Goodf
AI 科技评论按:近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣。
Cvxopt 是基于 Python 语言的用于解决凸优化问题的免费包,可以用于求解纳什均衡问题的最优策略,好用但是不容易理解,
AI 科技评论按:日前,在由上海财经大学交叉科学研究院(RIIS)主办,杉数科技有限公司协办的「现代运筹学发展讨论会」上,腾讯 AI Lab(腾讯人工智能实验室)主任张潼博士发表了精彩演说。作为机器学
lambda表达式本身是一个非常基础的python函数语法,其基本功能跟使用def所定义的python函数是一样的,只是lambda表达式基本在一行以内就完整的表达了整个函数的运算逻辑。这里我们简单展示一些lambda表达式的使用示例,以供参考。
全局优化与局部优化的理念完全不同(全局优化求解器通常被称为随机求解器,试图避免局部最优点)。
非凸优化在现代机器学习中普遍存在。研究人员设计了非凸目标函数,并使用现成的优化器(例如随机梯度下降及其变体)对其进行了优化,它们利用了局部几何并进行迭代更新。即使在最坏的情况下求解非凸函数都是 NP 困难的,但实践中的优化质量通常也不是问题,人们普遍认为优化器会找到近似全局最小值。
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。
这原本是吴恩达在斯坦福大学开授的课程,课程视频在网络上受到了学习者的广泛好评,后来还推出了专门的网课。
本文共1800字,建议阅读6分钟。 让一系列免费的机器学习与数据科学书籍开启你的夏日学习之旅吧!
机器学习算法领域近期出现了大量研发进展,但目前社区尚缺乏对机器学习算法基础概念和近期进展的系统性介绍,尤其是基于随机优化方法、随机算法、非凸优化、分布式与在线学习,以及无投影方法的机器学习算法。
本文描述了一个开源软件(OSS)项目:PythonRobotics。这是一组用Python编程语言实现的机器人算法。该项目的重点是自主导航,目标是让机器人初学者了解每个算法背后的基本思想。
很多人想要搭上人工智能这列二十一世纪的快车,不断的顺应着互联网时代的变化,力求在这个不断革新的时代领域博得自己的一片立足之地。
里面提到了半正定二次型为什么会出现在凸优化中,以及为什么会有拉格朗日乘子法,主要参考瑞典皇家理工学院非常棒的PPT,
最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。
根据样本数据是否带有标签值,可以将机器学习算法分成有监督学习和无监督学习两类。有监督学习的样本数据带有标签值,它从训练样本中学习得到一个模型,然后用这个模型对新的样本进行预测推断。有监督学习的典型代表是分类问题和回归问题。
领取专属 10元无门槛券
手把手带您无忧上云