首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python...容器数据 转换为 PySpark 的 RDD 对象 ; PySpark 支持下面几种 Python 容器变量 转为 RDD 对象 : 列表 list : 可重复 , 有序元素 ; 元组 tuple :...对象相关 API 调用 SparkContext # parallelize 方法 可以将 Python 容器数据转为 RDD 对象 ; # 将数据转换为 RDD 对象 rdd = sparkContext.parallelize..., rdd.getNumPartitions()) print("RDD 元素: ", rdd.collect()) 3、代码示例 - Python 容器转 RDD 对象 ( 列表 ) 在下面的代码中...分区数量: 12 RDD 元素: [1, 2, 3, 4, 5] Process finished with exit code 0 4、代码示例 - Python 容器转 RDD 对象 (

43110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark核心RDD、什么是RDDRDD的属性、创建RDDRDD的依赖以及缓存、

    RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。...常用的Transformation如下所示: 转换 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) 返回一个新的RDD,该RDD...RDD求并集后返回一个新的RDD intersection(otherDataset) 对源RDD和参数RDD求交集后返回一个新的RDD distinct([numTasks])) 对源RDD进行去重后返回一个新的...RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。...当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。

    1.1K100

    Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

    一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...方法 不会修改原 RDD 数据 ; 使用方法 : new_rdd = old_rdd.filter(func) 上述代码中 , old_rdd 是 原始的 RDD 对象 , 调用 filter 方法.../python.exe" # 创建 SparkConf 实例对象 , 该对象用于配置 Spark 任务 # setMaster("local[*]") 表示在单机模式下 本机运行 # setAppName..."" # 导入 PySpark 相关包 from pyspark import SparkConf, SparkContext # 为 PySpark 配置 Python 解释器 import os...os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe

    43710

    Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

    一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ;...RDD#flatMap 方法 是 在 RDD#map 方法 的基础上 , 增加了 " 解除嵌套 " 的作用 ; RDD#flatMap 方法 也是 接收一个 函数 作为参数 , 该函数被应用于 RDD...数据处理 """ # 导入 PySpark 相关包 from pyspark import SparkConf, SparkContext # 为 PySpark 配置 Python 解释器 import...os os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe...程序 sparkContext.stop() 执行结果 : Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Scripts\python.exe

    36310

    spark RDD

    RDD简介 RDD,全称为Resilient Distributed Datasets(弹性分布式数据集),是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。...RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。 定义: 只读的,可分区的分布式数据集;数据集可全部或部分缓存在内存中,在一个App多次计算间重用, RDD是Spark的核心。...原生数据空间转RDD 原生的SCALA数据集合可以转换为RDD进行操作 包含一下两种方式 makeRDD parallelize 存储文件转RDD Partition(分区) 一份待处理的原始数据会被按照相应的逻辑切分成...窄依赖:指父RDD的每一个分区最多被一个子RDD的分区所用。 宽依赖:指子RDD的分区依赖于父RDD的所有分区。...比如 rdd.parallize(1 to 10).foreach(println) 这个操作没有shuffle,直接就输出了,那么只有它的task是resultTask,stage也只有一个;如果是rdd.map

    46710

    Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV...操作,将同一个 Key 下的 Value 相加 rdd2 = rdd.reduceByKey(lambda a, b: a + b) # 打印新的 RDD 中的内容 print(rdd2.collect...os os.environ['PYSPARK_PYTHON'] = "D:/001_Develop/022_Python/Python39/python.exe" # 创建 SparkConf 实例对象...: ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element: (element...sparkContext.stop() 执行结果 : D:\001_Develop\022_Python\Python39\python.exe D:/002_Project/011_Python/HelloPython

    60920

    RDD解析

    partition的个数需要视情况而定,RDD 可以通过创建操作或者转换操作得到,转换操作中,分区的个数会根据转换操作对应多个 RDD 之间的依赖关系确定,窄依赖子 RDD 由父 RDD 分区个数决定,...(MapPartitionsRDD)内的第一个父 RDD 的 iterator 方法,该方的目的是拉取父 RDD 对应分区内的数据。...abstract class Dependency[T] extends Serializable { def rdd: RDD[T] } 每个RDD都有一个返回其所依赖的dependences:Seq...在窄依赖中,父RDD的一个分区至多被一个子RDD的一个分区所依赖,分区数据不可被拆分: ? 在宽依赖中,父RDD的一个分区被子RDD的多个分区所依赖,分区数据被拆分: ?...一对一依赖表示子 RDD 分区的编号与父 RDD 分区的编号完全一致的情况,若两个 RDD 之间存在着一对一依赖,则子 RDD 的分区个数、分区内记录的个数都将继承自父 RDD

    57610

    spark——spark中常说RDD,究竟RDD是什么?

    RDD概念 介绍spark离不开RDDRDD是其中很重要的一个部分。...虽然我们还是不够清楚,但是已经比只知道RDD这个概念清楚多了, RDD是一个不可变的分布式对象集合,每个RDD都被分为多个分区,这些分区运行在集群的不同节点上。...数据和计算之间的映射关系就存储在RDD中。 RDD之间的依赖关系,RDD之间存在转化关系,一个RDD可以通过转化操作转化成其他RDD,这些转化操作都会被记录下来。...RDD: ?...顾名思义,执行转化操作的时候,spark会将一个RDD转化成另一个RDDRDD中会将我们这次转化的内容记录下来,但是不会进行运算。所以我们得到的仍然是一个RDD而不是执行的结果。

    68800

    Spark RDD详解

    RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习Spark其他组件的基础。...内部处理逻辑是通过使用者调用不同的Spark算子,一个RDD会转换为另一个RDD(这也体现了RDD只读不可变的特点,即一个RDD只能由另一个RDD转换而来),以transformation算子为例,RDD...它会记录RDD的元数据信息和依赖关系,当该RDD的部分分区数据丢失时,可以根据这些信息来重新运算和恢复丢失的分区数据。...通过RDD的缓存,后续可以对此RDD或者是基于此RDD衍生出的其他的RDD处理中重用这些缓存的数据集 容错(checkpoint) 本质上是将RDD写入磁盘做检查点(通常是checkpoint到...(根据父RDD计算出子RDD) 3.RDD的依赖列表 4.RDD默认是存储于内存,但当内存不足时,会spill到disk(可通过设置StorageLevel来控制) 5.默认hash分区,可自定义分区器

    80720

    Python大数据之PySpark(六)RDD的操作

    分区间:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' if __name__ == '__main__': #TODO: 1-...分区间:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' def addNum(x,y): return x+y if __name...分区间:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' ''' 对初始值进行操作 ''' def createCombiner(...mergeValue, mergeCombiners) print(sorted(by_key_result.collect()))#[(‘a’, [1, 1]), (‘b’, [1])] * 案例2 * ```python...TODO是Python提供了预留功能的地方 ‘’’ ‘’’ 对初始值进行操作 [value,1],value指的是当前学生成绩,1代表的是未来算一下一个学生考了几次考试 (“Fred”, 88)

    30850

    4.3 RDD操作

    在这种情况下,Spark将会在集群中保留这个RDD,以便其他Job可以更快地访问,另外,Spark也支持持久化RDD到磁盘中,或者复制RDD到各个节点。...4.3.1 转换操作 转换操作是RDD的核心之一,通过转换操作实现不同的RDD结果,作为下一次RDD计算的数据输入,转换操作不会触发Job的提交,仅仅是标记对RDD的操作,形成DAG图,以供Action...scala>val rdd =sc.parallelize(data) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD...假如其中一个RDD坏掉,RDD中有记录之前的依赖关系,且依赖关系中记录算子和分区。此时,仅仅需要再执行一遍父RDD的相应分区。 但是,跨宽依赖的再执行能够涉及多个父RDD,从而引发全部的再执行。...移除数据 RDD可以随意在RAM中进行缓存,因此它提供了更快速的数据访问。目前,缓存的粒度为RDD级别,只能缓存全部的RDD

    90070
    领券